一批电子元器件在出厂前要进行一次质量检测,检测方案是:从这批电子元器件中随机抽取5个,对其一个一个地进行检测,若这5个都为优质品,则这批电子元器件通过这次质量检测,若检测出非优质品,则停止检测,并认为这批电子元器件不能通过这次质量检测,假设抽取的每个电子元器件是优质品的概率都为p.
(1)设一次质量检测共检测了X个电子元器件,求X的分布列;
(2)设0.9⩽p⩽0.96,已知每个电子元器件的检测费用都是100元,对这批电子元器件进行一次质量检测所需的费用记为Y(单位:元),求Y的数学期望E(Y)的最小值.
【考点】离散型随机变量的均值(数学期望).
【答案】(1)X的分布列为:
(2)Y的数学期望E(Y)的最小值为:409.51元.
X | 1 | 2 | 3 | 4 | 5 |
P | 1-p | p•(1-p) | p2•(1-p) | p3•(1-p) | p4 |
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:18引用:1难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:133引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:196引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:137引用:6难度:0.7