试卷征集
加入会员
操作视频

如图,在等边△ABC中,点D、E分别在BC、CA的延长线上,AE=CD,连接BE、AD.
(1)求证:∠CAD=∠ABE;
(2)如图2,延长DA,交BE于点F,过B点作BG⊥AD于G.
①求∠EBG的大小;
②若
FG
EF
=
4
,求此时
BE
FG
的值.

【考点】三角形综合题
【答案】(1)见解析;
(2)①∠FBG=30°;②
BE
FG
=
9
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/29 13:30:5组卷:64引用:2难度:0.5
相似题
  • 1.如图(1),已知CA=CB,CD=CE,且∠ACB=∠DCE,将△DCE绕C点旋转(A、C、D三点在同一直线上除外).
    (1)求证:△ACD≌△BCE;
    (2)在△DCE绕C点旋转的过程中,若ED、AB所在的直线交于点F,当点F为边AB的中点时,如图2所示.求证:∠ADF=∠BEF(提示:利用类倍长中线方法添加辅助线);
    (3)在(2)的条件下,求证:AD⊥CD.

    发布:2025/6/5 4:0:1组卷:1141引用:12难度:0.3
  • 2.如图,两个形状、大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转,我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”.
    (1)如图1,∠DPC=
    度;
    (2)如图2,三角板BPD不动,三角板PAC从PN处开始绕点P逆时针旋转(0°<旋转角<180°),若PF平分∠APD,PE平分∠CPD,求∠EPF的度数;
    (3)在(2)的条件下,若三角板PAC的旋转速度每秒10°,设旋转时间为t秒,问t为何值时,问这两个三角形是“孪生三角形”.

    发布:2025/6/5 9:0:1组卷:66引用:1难度:0.2
  • 3.如图,△ABC为等边三角形,直线l经过点C,在l上位于C点右侧的点D满足∠BDC=60°.
    (1)如图1,在l上位于C点左侧取一点E,使∠AEC=60°,求证:△AEC≌△CDB;
    (2)如图2,点F、G在直线l上,连接AF,在l上方作∠AFH=120°,且AF=HF,∠HGF=120°,求证:HG+BD=CF;
    (3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为

    发布:2025/6/5 5:0:1组卷:2123引用:6难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正