如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,动点P从点B出发,沿BD以每秒3个单位长度的速度向终点D运动.点P出发后,过点P作PQ⊥AB交折线BC-CA于点Q,以PQ、PD为邻边作矩形PDEQ.设矩形PDEQ与△ABC重叠部分图形的面积为S,点P的运动时间为t秒.
(1)当点Q与点C重合时,求t的值;
(2)当点E落在AC边上时,求t的值;
(3)求S关于t的函数关系式;
(4)当点Q落在∠A的平分线上时,直接写出t的值.
【考点】四边形综合题.
【答案】(1)t=;
(2)t=;
(3)S=
;
(4)t=.
6
5
(2)t=
15
16
(3)S=
- 12 t 2 + 20 t ( 0 < t ≤ 15 16 ) |
- 68 3 t 2 + 40 t - 75 8 ( 15 16 < t ≤ 6 5 ) |
243 32 t 2 - 405 8 t + 2025 32 ( 6 5 < t < 5 3 ) |
(4)t=
2
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:71引用:1难度:0.2
相似题
-
1.如图,四边形ABCD中,AD∥BC,CD=10,AB=2
,动点P沿着A-D运动,同时点Q从点D沿着D-C-B运动,它们同时到达终点,设Q点运动的路程为x,DP的长度为y,且y=-17x+18.34
(1)求AD,BC的长.
(2)设△PQD的面积为S,在P,Q的运动过程中,S是否存在最大值,若存在,求出S的最大值;若不存在,请说明理由.
(3)当PQ与四边形ABCD其中一边垂直时,求所有满足要求的x的值.发布:2025/6/16 4:0:2组卷:414引用:2难度:0.4 -
2.如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:
①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=203453
其中正确的结论是(填写所有正确结论的序号).发布:2025/6/16 11:0:1组卷:3337引用:5难度:0.2 -
3.(1)[问题背景]如图1,在△ABC中,AB=AC,∠BAC=α°,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转α°得到AE,连接EC,则∠BCE=°(用含α的式子表示),线段BC,DC,EC之间满足的等量关系式为;
(2)[探究证明]如图2,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到线段AE,连接DE,求证:BD2+CD2=2AD2;
(3)[拓展延伸]如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°,BF=3,CF=1.将△ABF绕点A逆时针旋转90°,试画出旋转后的图形,并求出AF的长度.(不要求尺规作图)发布:2025/6/16 14:30:2组卷:1152引用:2难度:0.1