试卷征集
加入会员
操作视频

如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交点M,与x轴交于点A和B.
(1)求出y=mx2+nx+p的解析式,试猜想出一般形式y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明);
(2)若AB中点是C,求sin∠CMB;
(3)如果一次函数y=kx+b过点M,且于y=mx2+nx+p相交于另一点N(i,j),如果i≠j,且i2-i+z=0和j2-j+z=0,求k的值.

【考点】二次函数综合题
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/27 13:0:1组卷:106引用:3难度:0.1
相似题
  • 1.如图1,抛物线y=ax2+bx+c(a≠0)与x轴相交于点A、B(点B在点A左侧),与y轴相交于点C(0,3).已知点A坐标为(1,0),△ABC面积为6.

    (1)求抛物线的解析式;
    (2)点P是直线BC上方抛物线上一动点,过点P作直线BC的垂线,垂足为点E,过点P作PF∥y轴交BC于点F,求△PEF周长的最大值及此时点P的坐标;
    (3)如图2,将该抛物线向左平移2个单位长度得到新的抛物线y',平移后的抛物线与原抛物线相交于点D,点M为直线BC上的一点,点N是平面坐标系内一点,是否存在点M,N,使以点B,D,M,N为顶点的四边形为菱形,若存在,请直接写出点M的坐标;若不存在,请说明理由.

    发布:2025/6/4 17:30:2组卷:486引用:3难度:0.4
  • 2.如图,抛物线y=a(x+1)(x-3)交x轴于A、B两点(点A在点B的左侧),交y轴负半轴于C点,已知S△ABC=6.
    (1)求抛物线的解析式;
    (2)在直线BC下方的抛物线上取一点P,连接AP交BC于E点,当tan∠AEC=4时,求点P的坐标;
    (3)点M、N均在抛物线上,设点M的横坐标为m,点N的横坐标为n,(0<n<m<3),连接MN,连接AM、AN分别与y轴交于点S、T,∠AMN=2∠BAM,请问3OS+ST是否为定值?若是,求出其值;若不是,说明理由.

    发布:2025/6/4 17:30:2组卷:236引用:1难度:0.1
  • 3.已知抛物线y=ax2+bx-2与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C.直线l由直线BC平移得到,与y轴交于点E(0,n).四边形MNPQ的四个顶点的坐标分别为M(m+1,m+3),N(m+1,m),P(m+5,m),Q(m+5,m+3).
    (1)填空:a=
    ,b=

    (2)若点M在第二象限,直线l与经过点M的双曲线y=
    k
    x
    有且只有一个交点,求n2的最大值;
    (3)当直线l与四边形MNPQ、抛物线y=ax2+bx-2都有交点时,存在直线l,对于同一条直线l上的交点,直线l与四边形MNPQ的交点的纵坐标都不大于它与抛物线y=ax2+bx-2的交点的纵坐标.
    ①当m=-3时,直接写出n的取值范围;
    ②求m的取值范围.

    发布:2025/6/5 8:30:1组卷:1460引用:3难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正