试卷征集
加入会员
操作视频

如图,在平面直角坐标系中,以点M(2,4)为圆心,以MO的长为半径的圆交x轴于点A,交y轴于点C.过点B(-2,2)的直线l与⊙M相切,且与y轴,直线x=2分别交于D,E两点,连接AB,AD.
(1)试证明点B在⊙M上;
(2)判断△ABD的形状并说明理由;
(3)已知抛物线y=ax2-4ax(a≠0),在x轴上方的抛物线上是否存在点P,使得以B,M,P为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,请说明理由.

【考点】二次函数综合题
【答案】(1)见解析;
(2)△ABD是等腰直角三角形;
(3)存在,a的值为
3
16
或1或-
1
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:62引用:1难度:0.1
相似题
  • 1.如图1,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点C(0,2),点P是抛物线上的一个动点,过点P作PQ⊥x轴,垂足为Q,交直线BC于点D.
    (1)求该抛物线的函数表达式;
    (2)若以P、D、O、C为顶点的四边形是平行四边形,求点Q的坐标;
    (3)如图2,当点P位于直线BC上方的抛物线上时,过点P作PE⊥BC于点E,设△PDE的面积为S,求当S取得最大值时点P的坐标,并求S的最大值.

    发布:2025/5/24 7:30:1组卷:1042引用:7难度:0.5
  • 2.如图1,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0),B(4,0),C(0,2)三点.
    (1)求这个二次函数的解析式;
    (2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;
    (3)如图2,点P是直线BC上方抛物线上的一点,过点P作PE⊥BC于点E,作PF∥y轴交BC于点F,求△PEF周长的最大值.

    发布:2025/5/24 7:30:1组卷:505引用:3难度:0.3
  • 3.如图,在平面直角坐标系中,抛物线A(-1,0),B(3,0),C(0,-1)三点.
    (1)求该抛物线的表达式与顶点坐标;
    (2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,求所有满足条件点P的坐标.

    发布:2025/5/24 7:30:1组卷:290引用:1难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正