抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点在点B左侧),与y轴交于点C(0,-1),顶点为点D.
(1)如图,若点D坐标为(1,-43),
①求抛物线的解析式;
②点P为线段AB上一点,过P作PH∥y轴分别与抛物线,直线y=13x+1交于G,H两点,抛物线上是否存在点Q,使得四边形CGQH为平行四边形,若存在,请求出点H的坐标,若不存在,请说明理由;
(2)已知,点M的坐标为(2,0),点N的坐标为(-2,0),若顶点D恰好在直线y=-x-2上,抛物线经过四个象限,且与线段MN有且只有一个公共点,直接写出b的取值范围.
(
1
,-
4
3
)
y
=
1
3
x
+
1
【考点】二次函数综合题.
【答案】(1)①;②存在,∴H1(2,),H2(-1,);(2)-2-≤b<-2或.
y
=
1
3
x
2
-
2
3
x
-
1
5
3
2
3
5
-
2
+
5
≤
b
<
1
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:291引用:3难度:0.3
相似题
-
1.如图,抛物线y=ax2-3ax+b与直线AB交于A(-2,
)、B(4,0)两点,点C是此抛物线上的一个动点,过点C作CD⊥x轴,交直线AB于点D.32
(1)求此抛物线的解析式;
(2)如图①,当点C在直线AB下方的抛物线上运动时,请求出线段CD长度的最大值;
(3)如图②,以D为圆心,CD的长为半径作⊙D.当⊙D与x轴相切时,请直接写出点C的横坐标.发布:2025/6/17 22:30:1组卷:63引用:1难度:0.2 -
2.如图,抛物线y=
(x+2)(x-8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是( )14发布:2025/6/17 18:30:1组卷:2558引用:19难度:0.7 -
3.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.
(1)求抛物线的解析式;
(2)当点P在直线OA上方时,求线段PC的最大值;
(3)过点A作AD⊥x轴于点D,在抛物线上是否存在点P,使得以P、A、C、D四点为顶点的四边形是平行四边形?若存在,求m的值;若不存在,请说明理由.发布:2025/6/17 18:0:1组卷:2088引用:13难度:0.2