如图:已知抛物线y=-x2+bx+c与y轴交于点B,与x轴分别交于点A、点C,直线y=12x+1与抛物线相交于点B、点D(1,32),已知点A坐标是(-12,0),点P是抛物线上一动点.
(1)b,c的值;
(2)当点P位于直线BD上方何处时,△BPD面积最大?最大面积是多少?
(3)点M是直线BD上一动点,是否存在点M、点P使得四边形ABMP恰好为平行四边形?若存在,求出此时点M、点P的坐标.
y
=
1
2
x
+
1
D
(
1
,
3
2
)
(
-
1
2
,
0
)
【考点】直线与圆锥曲线的综合;二次函数的性质与图象.
【答案】(1);c=1;
(2)当时,△BPD面积最大,最大面积是;
(3)存在,M(2,2),.
b
=
3
2
(2)当
P
(
1
2
,
3
2
)
1
8
(3)存在,M(2,2),
P
(
3
2
,
1
)
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/3 8:0:9组卷:21引用:2难度:0.5
相似题
-
1.点P在以F1,F2为焦点的双曲线
(a>0,b>0)上,已知PF1⊥PF2,|PF1|=2|PF2|,O为坐标原点.E:x2a2-y2b2=1
(Ⅰ)求双曲线的离心率e;
(Ⅱ)过点P作直线分别与双曲线渐近线相交于P1,P2两点,且,OP1•OP2=-274,求双曲线E的方程;2PP1+PP2=0
(Ⅲ)若过点Q(m,0)(m为非零常数)的直线l与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(λ为非零常数),问在x轴上是否存在定点G,使MQ=λQN?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.F1F2⊥(GM-λGN)发布:2024/12/29 10:0:1组卷:72引用:5难度:0.7 -
2.已知两个定点坐标分别是F1(-3,0),F2(3,0),曲线C上一点任意一点到两定点的距离之差的绝对值等于2
.5
(1)求曲线C的方程;
(2)过F1(-3,0)引一条倾斜角为45°的直线与曲线C相交于A、B两点,求△ABF2的面积.发布:2024/12/29 10:30:1组卷:96引用:1难度:0.9 -
3.若过点(0,-1)的直线l与抛物线y2=2x有且只有一个交点,则这样的直线有( )条.
发布:2024/12/29 10:30:1组卷:26引用:5难度:0.7