△ABC,直线DE交AB于D,交AC于E,将△ADE沿DE折叠,使A落在同一平面上的A′处,∠A的两边与BD、CE的夹角分别记为∠1,∠2
如图①,当A落在四边形BDEC内部时,探索∠A与∠1+∠2之间的数量关系,并说明理由.
如图②,当A′落在BC下方时,请直接写出∠A与∠1+∠2之间的数量关系.
如图③,当A′落在AC右侧时,探索∠A与∠1,∠2之间的数量关系,并说明理由.

【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:326引用:2难度:0.3
相似题
-
1.△ABC中,AB、AC边的高线交于点O,∠A=50°,则∠BOC=.
发布:2025/6/17 19:0:1组卷:34引用:1难度:0.4 -
2.如图①,在△ABC中,AE平分∠BAC,交BC于点E,∠C>∠B,且FD⊥BC于点D.
(1)试推出∠EFD,∠B,∠C的关系;
(2)如图②,当点F在AE的延长线上时,其余条件不变,(1)中的结论还成立吗?请说明理由.发布:2025/6/17 21:30:1组卷:155引用:1难度:0.5 -
3.如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F; ②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C.其中正确个数是( )
发布:2025/6/17 21:30:1组卷:1883引用:10难度:0.5