已知函数f(x)=x3+klnx(k∈R),f'(x)为f(x)的导函数.
(Ⅰ)当k=6时,
(i)求曲线y=f(x)在点(1,f(1))处的切线方程;
(ii)求函数g(x)=f(x)-f′(x)+9x的单调区间和极值;
(Ⅱ)当k≥-3时,求证:对任意的x1,x2∈[1,+∞),且x1>x2,有f′(x1)+f′(x2)2>f(x1)-f(x2)x1-x2.
g
(
x
)
=
f
(
x
)
-
f
′
(
x
)
+
9
x
f
′
(
x
1
)
+
f
′
(
x
2
)
2
>
f
(
x
1
)
-
f
(
x
2
)
x
1
-
x
2
【考点】利用导数研究函数的单调性;利用导数研究函数的极值.
【答案】(Ⅰ)(i)9x-y-8=0;(ii)函数g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,极小值为g(1)=1,无极大值;
(Ⅱ)证明见解析.
(Ⅱ)证明见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:272引用:3难度:0.2
相似题
-
1.已知函数f(x)=x3-2kx2+x-3在R上不单调,则k的取值范围是 ;
发布:2024/12/29 13:0:1组卷:236引用:3难度:0.8 -
2.在R上可导的函数f(x)的图象如图示,f′(x)为函数f(x)的导数,则关于x的不等式x•f′(x)<0的解集为( )
发布:2024/12/29 13:0:1组卷:265引用:7难度:0.9 -
3.已知函数f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函数f(x)在(0,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)若函数f(x)有两个极值点x1,x2(x1≠x2),证明:.x1•x2>e2发布:2024/12/29 13:30:1组卷:141引用:2难度:0.2