在△ABC中,BD平分∠ABC,CE平分∠ACB,BD和CE交于点O,其中令∠BAC=x,∠BOC=y.

(1)【计算求值】如图1,①如果x=50°,则y=115°115°;
②如果y=130°,则x=80°80°.
(2)【猜想证明】如图2请你根据(1)中【计算求值】的心得猜想写出y与x的关系式为y=y=90°+12xy=90°+12x,并请你说明你的猜想的正确性.
(3)【解决问题】如图3,某校园内有一个如图2所示的三角形的小花园,花园中有两条小路,BD和CE为三角形的角平分线,交点为点O,在O处建有一个自动浇水器,需要在BC边取一处接水口F,经过测量得知∠BAC=120°,OD•OE=12000米2,BC-BE-CD=170米,请你求出水管OF至少要多长?(结果取整数)
1
2
1
2
【考点】三角形综合题.
【答案】115°;80°;y=90°+x
1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1179引用:2难度:0.1
相似题
-
1.如图,△AOB中,OA=OB=6,将△AOB绕点O逆时针旋转得到△COD.OC与AB交于点G,CD分别交OB、AB于点E、F.
(1)∠A与∠D的数量关系是:∠A ∠D;
(2)求证:△AOG≌△DOE;
(3)当A,O,D三点共线时,恰好OB⊥CD,求此时CD的长.发布:2025/5/25 10:0:1组卷:82引用:1难度:0.2 -
2.如图,△ABC中,∠ACB=90°,CB=CA,CE⊥AB于E,点F是CE上一点,连接AF并延长交BC于点D,CG⊥AD于点G,连接EG.
(1)求证:CD2=DG•DA;
(2)如图1,若点D是BC中点,求证:CF=2EF;
(3)如图2,若GC=2,GE=2,求证:点F是CE中点.2发布:2025/5/25 11:0:2组卷:265引用:2难度:0.1 -
3.【阅读理解】
截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.
(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.
解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.
根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是 ;
【拓展延伸】
(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;
【知识应用】
(3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长为 cm.发布:2025/5/25 9:0:1组卷:427引用:6难度:0.3