试卷征集
加入会员
操作视频

如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.
(1)AM=
8-2t
8-2t
,AP=
2+t
2+t
.(用含t的代数式表示)
(2)当四边形ANCP为平行四边形时,求t的值.
(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,使四边形AQMK为菱形,若存在,求出t的值;若不存在,请说明理由.

【考点】四边形综合题
【答案】8-2t;2+t
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:672引用:6难度:0.3
相似题
  • 1.将正方形ABCD绕点A逆时针旋转α°到正方形AEFG.
    (1)如图1,当0°<α<90°时,EF与CD相交于点H.求证:DH=EH;
    (2)如图2,当0°<α<90°,点F、D、B正好共线时,
    ①求∠AFB度数;
    ②若正方形ABCD的边长为1,求CH的长:
    (3)连接DE,EC,FC.如图3,正方形AEFG在旋转过程中,是否存在实数m使AE2=DE2+mFC2-EC2总成立?若存在,求m的值;若不存在,请说明理由.

    发布:2025/6/8 13:30:1组卷:67引用:1难度:0.2
  • 2.如图,矩形ABCD中,AB=4,AD=8,E在AD上,DE=3,点P从点B出发,以每秒1个单位长度的速度沿着BC边向终点C运动,连接PE,设点P运动的时间为t秒.
    (1)过P作PF⊥AD,垂足为F,用含t的式子表示:EF=
    ,PC=

    (2)当t=2时,判断△PEC是否是直角三角形,并说明理由;
    (3)当∠PEC=∠DEC时,求t的值.

    发布:2025/6/8 12:30:1组卷:43引用:3难度:0.4
  • 3.如图,在正方形ABCD中,AB=BC=CD=AD=6,∠A=∠B=∠BCD=∠ADC=90°,将一直角三角板放在正方形ABCD上,使三角板的直角顶点与D点重合,三角板的一边交AB于点P,另一边交BC的延长线于点Q,如图1所示.

    (1)求证:DP=DQ;
    (2)如图2,在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,请你猜想PE和QE存在何种数量关系,并予以证明;
    (3)如图3,固定三角板直角顶点在D点不动,转动三角板使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC的延长线于点E,连接PE,若BP=2,求△DCE的面积.

    发布:2025/6/8 12:30:1组卷:58引用:1难度:0.2
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正