观察下列算式:152=225,252=625,352=1225,452=2025….
(1)可猜想;752=56255625;
(2)若用正整数n表示(1)中等号左边的两位数中的十位数字,则可用含n的等式表示(1)的运算规律:(10n+5)2=100n(n+1)+25(10n+5)2=100n(n+1)+25;
(3)请用所学知识说明(2)所写等式的正确性.
【考点】规律型:数字的变化类;列代数式.
【答案】5625;(10n+5)2=100n(n+1)+25
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/9 13:0:1组卷:39引用:2难度:0.7