国家射击队队员甲、乙两人在莆田市体育训练基地射击馆进行一次队内比赛,约定赛制如下:先进行一轮25发子弹,每枪一发的常规赛,命中数多者为胜者.如果常规赛命中数相同,则进行附加赛,即每人各射击一发子弹,一人子弹命中目标而另一人子弹未命中,命中者获胜,否则每人继续射击一发,直到分出胜负为止,设甲、乙两人每发子弹命中目标的概率分别为0.9和0.8,且每发子弹是否命中目标互不影响.
(1)用X表示常规赛中甲的命中数,求E(X)和P(X≥24);
(2)若甲、乙两人常规赛命中数相同,求在附加赛中两人恰好各射击三发子弹甲才获胜的概率.(结果保留3位小数)
参考数据:0.924≈0.080,722×18=93312,722×19=98496,742×18=98568.
【考点】离散型随机变量的均值(数学期望).
【答案】(1)22.5;0.272.(2)0.099.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:26引用:1难度:0.5
相似题
-
1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
(Ⅰ)求获得复赛资格的人数;
(Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
(Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5 -
2.设离散型随机变量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5 -
3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为( )
发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7