【实验】(1)如图①,点O为线段MN的中点,线段PQ与MN相交于点O,当OP=OQ时,四边形PMQN的形状为 DD;
A.矩形
B.菱形
C.正方形
D.平行四边形
其理论依据是 对角线互相平分的四边形是平行四边形对角线互相平分的四边形是平行四边形•
【探究】(2)如图②,在平行四边形ABCD中,点E是BC中点,过点E作AE的垂线交边CD于点F,连结AF.试猜想AB,AF,CF三条线段之间的数量关系,并给予证明.
【应用】(3)如图③,在△ABC中,点D为BC的中点,若∠BAD=90°,AD=2,AC=19,求△ABC的面积.
19
【考点】四边形综合题.
【答案】D;对角线互相平分的四边形是平行四边形
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/22 15:0:2组卷:140引用:3难度:0.4
相似题
-
1.在数学兴趣社团课上,同学们对平行四边形进行了深入探究.
探究一:如图1,在矩形ABCD中,AC2=AB2+BC2,BD2=AC2=CD2+AD2,则AC2+BD2=AB2+BC2+CD2+AD2,由此得出结论:矩形两条对角线的平方和等于其四边的平方和.
探究二:对于一般的平行四边形,是否仍有上面的结论呢?
证明:如图2,在▱ABCD中,过A作AM⊥BC于M,过D作DN⊥BC,交BC延长线于N.设AB=a,BC=b,BM=x,AM=y,
∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABC=∠DCN,
又∵∠AMB=∠DNC=90°,∴△ABM≌△DCN.
∴CN=BM=x,DN=AM=y.
请你接着完成上面的证明过程.
结论应用:若一平行四边形的周长为20,两条对角线长分别为8,2,求该平行四边形的四条边长.10发布:2025/5/22 18:30:2组卷:223引用:1难度:0.5 -
2.如图,在△ABC中,O是AB的中点,过A作BC的平行线,交CO延长线于D,点E,F分别是BC,AD的中点,连接AE和BF.
(1)求证:△OBC≌△OAD;
(2)请从以下两个问题中选择其中一个进行解答,(若多选,按第一个解答计分)
①当△ABC满足什么条件时,四边形AEBF是菱形?请加以证明;
②当△ABC满足什么条件时,四边形AEBF是矩形?请加以证明.发布:2025/5/22 19:30:1组卷:182引用:1难度:0.5 -
3.(1)【证明体验】如图1,正方形ABCD中,E、F分别是边AB和对角线AC上的点,∠EDF=45°.
①求证:△DBE∼△DCF;
②=;BECF
(2)【思考探究】如图2,矩形ABCD中,AB=6,BC=8,E、F分别是边AB和对角线AC上的点,tan∠EDF=,BE=5,求CF的长;43
(3)【拓展延伸】如图3,菱形ABCD中,BC=5,对角线AC=6,BH⊥AD交DA的延长线于点H,E、F分别是线段HB和AC上的点,tan∠EDF=,HE=34,求CF的长.85发布:2025/5/22 19:30:1组卷:1727引用:13难度:0.2