(1)【教材呈现】以下是某数学教材某页的部分内容(请填写横线中的依据):
例4、如图,在△ABC中,D是边BC的中点,过点C画直线CE,使CE∥AB,交AD的延长线于点E,求证:AD=ED.
证明:∵CE∥AB(已知),∴∠ABD=∠ECD,∠BAD=∠CED.
∵D为BC边中点,∴BD=CD.
在△ABD与△ECD中,
∵∠ABD=∠ECD ∠BAD=∠CED BD=CD
,
∴△ABD≌△ECD ( AASAAS)
∴AD=ED( 全等三角形的对应边相等全等三角形的对应边相等)

(2)【方法应用】如图①,在△ABC中,AB=6,AC=4,则BC边上的中线AD长度的取值范围是 1<AD<51<AD<5.
(3)【猜想证明】如图②,在四边形ABCD中,AB//CD,点E是BC的中点,若AE是∠BAD的平分线,试猜想线段AB、AD、DC之间的数量关系,并证明你的猜想.
∠ ABD =∠ ECD |
∠ BAD =∠ CED |
BD = CD |
【考点】四边形综合题.
【答案】AAS;全等三角形的对应边相等;1<AD<5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/16 4:0:1组卷:205引用:1难度:0.2
相似题
-
1.阅读下列材料:如图(1),在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称之为筝形.
(1)写出筝形的两个性质(定义除外).
①;②.
(2)如图(2),在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.求证:四边形AECF是筝形.
(3)如图(3),在筝形ABCD中,AB=AD=26,BC=DC=25,AC=17,求筝形ABCD的面积.发布:2025/6/15 18:30:1组卷:1000引用:12难度:0.1 -
2.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).
(1)直接写出点E的坐标;
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t=秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当3<t<5时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,用含x,y的式子表示z=.发布:2025/6/15 22:30:1组卷:563引用:3难度:0.4 -
3.(1)如图1,点P是▱ABCD内的一点,分别过点B、C、D作AP的垂线BE、CF、DH,垂足分别为E、F、H,猜想BE、CF、DH三者之间的关系,并证明;
(2)如图2,若点P在▱ABCD的外部,△APB的面积为18,△APD的面积为3,求△APC的面积;
(3)如图3,在(2)条件下,AB=BC,∠APC=∠ABC=90°,设AP、BP分别于CD相交于点M、N,=(请直接写出结论).CPPM发布:2025/6/15 11:0:2组卷:51引用:2难度:0.3