若数列{an}中存在三项,按一定次序排列构成等比数列,则称{an}为“等比源数列”.
(1)已知数列{an}为4,3,2,1,数列{bn}为1,2,6,24,分别判断{an},{bn}是否为“等比源数列”,并说明理由;
(2)已知数列{cn}的通项公式为cn=2n-1+1,判断{cn}是否为“等比源数列”,并说明理由;
(3)已知数列{dn}为单调递增的等差数列,且d1≠0,dn∈Z(n∈N*),求证{dn}为“等比源数列”.
c
n
=
2
n
-
1
+
1
d
n
∈
Z
(
n
∈
N
*
)
【考点】等差数列与等比数列的综合.
【答案】(1){an}是“等比源数列”,{bn}不是“等比源数列”,过程见解析;
(2){cn}不是“等比源数列”,过程见解析;
(3)证明过程见解析.
(2){cn}不是“等比源数列”,过程见解析;
(3)证明过程见解析.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:41引用:1难度:0.4
相似题
-
1.在数列{an}中,a1=5,an=qan-1+d(n≥2)
(1)数列{an}有可能是等差数列或等比数列吗?若可能给出一个成立的条件(不必证明);若不可能,请说明理由;
(2)若q=2,d=3,是否存在常数x,使得数列{an+x}为等比数列;
(3)在(2)的条件下,设数列{an}的前n项和为Sn,求满足Sn≥2009的最小自然数n的值.发布:2025/1/14 8:0:1组卷:8引用:1难度:0.5 -
2.在各项均为正数的等比数列{an}中,a1=2,且2a1,a3,3a2成等差数列.
(Ⅰ) 求等比数列{an}的通项公式;
(Ⅱ) 若数列{bn}满足bn=11-2log2an,求数列{bn}的前n项和Tn的最大值.发布:2024/12/29 5:30:3组卷:288引用:13难度:0.5 -
3.已知{an}是等差数列,公差d≠0,a1=1,且、a1,a3,a9成等比数列,则数列
的前n项和Sn=.{2an}发布:2024/12/29 7:0:1组卷:71引用:3难度:0.7