将小球(看作一点)以速度v1竖直上抛,上升速度随时间推移逐渐减少直至为0,此时小球达到最大高度,小球相对于抛出点的高度y(m)与时间t(s)的函数解析式为两部分之和,其中一部分为速度v1(m/s)与时间t(s)的积,另一部分与时间t(s)的平方成正比.若上升的初始速度v1=10m/s,且当t=1s时,小球达到最大高度.
(1)求小球上升的高度y与时间t的函数关系式(不必写范围),并写出小球上升的最大高度;
(2)如图,平面直角坐标系中,y轴表示小球相对于抛出点的高度,x轴表示小球距抛出点的水平距离,向上抛出小球时再给小球一个水平向前的均匀速度v2(m/s),发现小球运动的路线为一抛物线,其相对于抛出点的高度y(m)与时间t(s)的函数解析式与(1)中的解析式相同.
①若v2=5m/s,当 t=32s 时,小球的坐标为 (152,154)(152,154),小球上升的最高点坐标为 (5,5)(5,5);求小球上升的高度y与小球距抛出点的水平距离x之间的函数关系式;
②在小球的正前方的墙上有一高 3536m的小窗户PQ,其上沿P的坐标为(6,154),若小球恰好能从窗户中穿过(不包括恰好去中点P,Q,墙厚度不计),请直接写出小球的水平速度v2的取值范围.
t
=
3
2
s
15
2
15
4
15
2
15
4
35
36
m
15
4
【考点】二次函数的应用.
【答案】(,);(5,5)
15
2
15
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:507引用:4难度:0.5
相似题
-
1.某商店试销一种新商品,新商品的进价为30元/件,经过一段时间的试销发现,每月的销售量会因售价的调整而不同.令每月销售量为y件,售价为x元/件,每月的总利润为Q元.
(1)当售价在40≤x≤50元时,每月销售量都为60件,则此时每月的总利润最多是多少元?
(2)当售价在50≤x≤70元时,每月销售量与售价的关系如图所示,则此时当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?发布:2025/6/8 9:0:1组卷:56引用:3难度:0.6 -
2.如图所示为一座纵截面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水位下降1m时,水面的宽度为( )
发布:2025/6/8 9:0:1组卷:105引用:1难度:0.6 -
3.为了巩固脱贫攻坚成效,助推乡村振兴,最近市委市政府又出台了系列“惠农”政策,农民收入大幅增加.某村一农户生产经销一种农副产品,已知这种产品的成本为5元/千克,售价为6元/千克时,当天的销售量为100千克.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5千克.设当天销售单价统一为x元/千克(x≥6,且x是按0.5元的整数倍上涨),当天的销售利润为y元.
(1)求y与x之间的函数关系式,不要求写出自变量x的取值范围;
(2)若物价部门核定该产品的利润率不得超过80%,该产品的售价定为多少元时,才能使当天获得最大利润?最大利润是多少?发布:2025/6/8 8:0:6组卷:38引用:1难度:0.6