古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中有这样一个命题:平面内与两定点的距离的比为常数k(k>0且k≠1)的点的轨迹为圆.后人将这个圆称为阿波罗尼奥斯圆,已知点O(0,0),A(5,0),圆C:(x-4)2+y2=r2(r>0)上有且只有一个点P满足|PA||PO|=32,则r的值是( )
|
PA
|
|
PO
|
=
3
2
【考点】轨迹方程.
【答案】D
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/27 14:0:0组卷:68引用:1难度:0.5
相似题
-
1.点P为△ABC所在平面内的动点,满足
=t(AP),t∈(0,+∞),则点P的轨迹通过△ABC的( )AB|AB|cosB+AC|AC|cosC发布:2024/12/29 6:30:1组卷:106引用:3难度:0.7 -
2.已知两个定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|.
(1)求点P的轨迹方程并说明该轨迹是什么图形;
(2)若直线l:y=kx+1分别与点P的轨迹和圆(x+2)2+(y-4)2=4都有公共点,求实数k的取值范围.发布:2024/12/29 10:30:1组卷:43引用:3难度:0.5 -
3.已知四棱锥P-ABCD的底面ABCD为正方形,PD⊥底面ABCD,且PD=AD=4,点E为BC的中点.四棱锥P-ABCD的所有顶点都在同一个球面上,点M是该球面上的一动点,且PM⊥AE,则点M的轨迹的长度为( )
发布:2024/12/29 8:0:12组卷:14引用:1难度:0.6
相关试卷