为了监控某台机器的生产过程,检验员每天从该机器生产的零件中随机抽取若干零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这台机器正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).检验员某天从生产的零件中随机抽取16个零件,并测量其尺寸(单位:cm)如下:
9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
x
根据生产经验,在一天抽检的零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为该机器可能出现故障,需要停工检修.
(1)试利用估计值判断该机器是否可能出现故障;
(2)若一台机器出现故障,则立即停工并申报维修,直到维修日都不工作.
根据长期生产经验,一台机器停工n天的总损失额y=3000+2000(n-1)+100(n-1)2,n=1、2、3、4(单位:元).现有2种维修方案(一天完成维修)可供选择:
方案一:加急维修单,维修人员会在机器出现故障的当天上门维修,维修费用为3000元;
方案二:常规维修单,维修人员会在机器出现故障当天或者之后3天中的任意一天上门维修,维修费用为500元.
现统计该工厂最近100份常规维修单,获得机器在第n(n=1,2,3,4)天得到维修的数据如下:
n | 1 | 2 | 3 | 4 |
频数 | 10 | 30 | 50 | 10 |
参考数据:
16
∑
i
=
1
x
i
=
159
.
52
1
16
16
∑
i
=
1
(
x
i
-
x
)
2
≈
0
.
212
x
=
1
n
n
∑
i
=
1
x
i
s
=
1
n
n
∑
i
=
1
(
x
i
-
x
)
2
【考点】离散型随机变量的方差与标准差.
【答案】(1)出现了故障;
(2)选方案一.
(2)选方案一.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:121引用:3难度:0.4
相似题
-
1.已知一组样本数据x1,x2…x10,且
+x21+…+x22=180,平均数x210=4,则该组数据的方差为x发布:2024/12/29 13:30:1组卷:138引用:3难度:0.5 -
2.2021年是北京城市轨道交通新线开通的“大年”,开通线路的条、段数为历年最多.12月31日首班车起,地铁19号线一期开通试运营.地铁19号线一期全长约22公里,共设10座车站,此次开通牡丹园、积水潭、牛街、草桥、新发地、新宫共6座车站.在试运营期间,地铁公司随机选取了乘坐19号线一期的200名乘客,记录了他们的乘车情况,得到下表(单位:人):
下车站
上车站牡丹园 积水潭 牛街 草桥 新发地 新宫 合计 牡丹园 /// 5 6 4 2 7 24 积水潭 12 /// 20 13 7 8 60 牛街 5 7 /// 3 8 1 24 草桥 13 9 9 /// 1 6 38 新发地 4 10 16 2 /// 3 35 新宫 2 5 5 4 3 /// 19 合计 36 36 56 26 21 25 200
(Ⅱ)在试运营期间,从在积水潭站上车的所有乘客中随机选取三人,设其中在牛街站下车的人数为X,求随机变量X的分布列以及数学期望;
(Ⅲ)为了研究各站客流量的相关情况,用ξ1表示所有在积水潭站上下车的乘客的上、下车情况,“ξ1=1”表示上车,“ξ1=0”表示下车.相应地,用ξ2,ξ3分别表示在牛街,草桥站上、下车情况,直接写出方差Dξ1,Dξ2,Dξ3大小关系.发布:2024/12/29 12:30:1组卷:608引用:7难度:0.5 -
3.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行.它被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法某中学培养学生知法懂法,组织全校学生学习《中华人民共和国民法典》并组织知识竞赛.为了解学习的效果,现从高一,高二两个年级中各随机抽取20名学生的成绩(单位:分),绘制成如图所示的茎叶图:
根据学生的竞赛成绩,将其分为四个等级:测试成绩(单位:分) [60,70) [70,80) [80,90) [90,100) 等级 合格 中等 良好 优秀
(2)现从样本中成绩为良好的学生中随机抽取3人座谈,记X为抽到高二年级的人数,求X的分布列,数学期望与方差.发布:2024/12/29 12:30:1组卷:11引用:2难度:0.6