(1)【探究发现】
如图1,正方形ABCD两条对角线相交于点O,正方形A1B1C1O与正方形ABCD的边长相等,在正方形A1B1C1O绕点O旋转过程中,边OA1交边AB于点M,边OC1交边BC于点N.则①线段BM、BN、AB之间满足的数量关系是 AB=BN+BMAB=BN+BM.
②四边形OMBN与正方形ABCD的面积关系是S四边形OMBN=1414S正方形ABCD;
(2)【类比探究】
如图2,若将(1)中的“正方形ABCD”改为“含60°的菱形ABCD”,即∠B1OD1=∠DAB=60°,且菱形OB1C1D1与菱形ABCD的边长相等.当菱形OB1C1D1绕点O旋转时,保持边OB1交边AB于点M,边OD1交边BC于点N.
请猜想:
①线段BM、BN与AB之间的数量关系是 BN+BM=12ABBN+BM=12AB;
②四边形OMBN与菱形ABCD的面积关系是S四边形OMBN=1818S菱形ABCD;
请你证明其中的一个猜想.
(3)【拓展延伸】
如图3,把(2)中的条件“∠B1OD1=∠DAB=60°”改为“∠DAB=∠B1OD1=α”,其他条件不变,则
①BM+BNBD=sinα2sinα2;(用含α的式子表示)
②S四边形OMBNS菱形ABCD=12sin2α212sin2α2.(用含α的式子表示)

1
4
1
4
1
2
1
2
1
8
1
8
BM
+
BN
BD
α
2
α
2
S
四边形
OMBN
S
菱形
ABCD
1
2
α
2
1
2
α
2
【考点】四边形综合题.
【答案】AB=BN+BM;;BN+BM=AB;;sin;sin2
1
4
1
2
1
8
α
2
1
2
α
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:2417引用:4难度:0.1
相似题
-
1.已知:△ABC中,AB=AC,∠BAC=α,P是边BC上一点,逆时针把AP旋转α角到AE(即AE=AP,∠PAE=∠BAC=α),作ED∥BC交直线AB于D.
(1)求证:四边形PCDE是平行四边形;
(2)若α=120°,AB=3.
①当四边形PCDE为菱形,试在图2中画出图形,并求出CP的值;
②当四边形PCDE为矩形,如图3,直接写出矩形PCDE面积的值 .发布:2025/6/15 9:30:1组卷:30引用:1难度:0.3 -
2.(1)如图1,点P是▱ABCD内的一点,分别过点B、C、D作AP的垂线BE、CF、DH,垂足分别为E、F、H,猜想BE、CF、DH三者之间的关系,并证明;
(2)如图2,若点P在▱ABCD的外部,△APB的面积为18,△APD的面积为3,求△APC的面积;
(3)如图3,在(2)条件下,AB=BC,∠APC=∠ABC=90°,设AP、BP分别于CD相交于点M、N,=(请直接写出结论).CPPM发布:2025/6/15 11:0:2组卷:51引用:2难度:0.3 -
3.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.
(1)如图1,AB<AD,
①求证:四边形BEDF是菱形;
②若AB=4,AD=8,求四边形BEDF的面积;
(2)如图2,若AB=8,AD=4,请按要求画出图形,并直接写出四边形BEDF的面积.发布:2025/6/15 10:30:2组卷:163引用:2难度:0.3