(1)如图1是用4个全等的长方形纸板拼成一个“回形”正方形纸板.图中阴影部分面积用不同的代数式表示可得一个恒等式,这个等式是 (a+b)2-(b-a)2=4ab(a+b)2-(b-a)2=4ab;已知(b+a)2=25,ab=4,则(b-a)2=99;
(2)利用图1的结论,若(3x-y)2=64,(3x+y)2=100,求xy的值.
(3)如图2,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)图中阴影部分面积用不同的代数式表示可得一个恒等式,这个等式是 (2m+n)(m+2n)-5mn=2m2+2n2(2m+n)(m+2n)-5mn=2m2+2n2;用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和为 6m+6n6m+6n;
(4)如图2,若每块小矩形的面积为8cm2,阴影部分面积(四个正方形的面积和)为40cm2,试求(m+n)2的值.
【考点】完全平方公式的几何背景.
【答案】(a+b)2-(b-a)2=4ab;9;(2m+n)(m+2n)-5mn=2m2+2n2;6m+6n
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:95引用:2难度:0.7
相似题
-
1.如图所示的是正方形的房屋结构平面图,其中主卧与客卧都是正方形,其面积之和比其余面积(阴影部分)多6.25m2,则主卧与客卧的周长差是( )
发布:2025/1/1 6:30:3组卷:207引用:4难度:0.6 -
2.学习整式乘法时,老师拿出三种型号卡片,如图1.
(1)利用多项式与多项式相乘的法则,计算:(a+2b)(a+b)=;
(2)选取1张A型卡片,4张C型卡片,则应取 张B型卡片才能用它们拼成一个新的正方形,此新的正方形的边长是 (用含a,b的代数式表示);
(3)选取4张C型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D型卡片,由此可检验的等量关系为 ;
(4)选取1张D型卡片,3张C型卡片按图3的方式不重复的叠放长方形MNPQ框架内,已知NP的长度固定不变,MN的长度可以变化,且MN≠0.图中两阴影部分(长方形)的面积分别表示为S1,S2,若S1-S2=3b2,则a与b有什么关系?请说明理由.发布:2024/12/23 18:0:1组卷:3721引用:6难度:0.1 -
3.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为.
发布:2024/12/23 18:0:1组卷:2016引用:6难度:0.5