已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然对数的底,a∈R)
(1)求f(x)的解析式;
(2)设g(x)=ln|x||x|,x∈[-e,0),求证:当a=-1时,f(x)>g(x)+12;
(3)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.
g
(
x
)
=
ln
|
x
|
|
x
|
,
x
∈
[
-
e
,
0
)
f
(
x
)
>
g
(
x
)
+
1
2
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:1404引用:15难度:0.1