已知:在Rt△ABC中,∠ACB=90°,BC=AC,点D在直线AB上,连接CD,在CD的右侧作CE⊥CD,CD=CE.
(1)如图1,①点D在AB边上,线段BE和线段AD关系是 BE=AD,BE⊥ADBE=AD,BE⊥AD;
②直接写出线段AD,BD,DE之间的数量关系 AD2+BD2=DE2AD2+BD2=DE2;
(2)如图2,点D在B右侧.请写出线段AD,BD,DE之间的数量关系,并说明理由;
(3)拓展延伸
如图3,∠DCE=∠DBE=90°,CD=CE,BC=2,BE=1,请直接写出线段EC的长.

BC
=
2
【考点】三角形综合题.
【答案】BE=AD,BE⊥AD;AD2+BD2=DE2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/10/16 7:0:2组卷:249引用:1难度:0.3
相似题
-
1.如图,三角形ABO的三个顶点的坐标分别为O(0,0),A(5,0),B(2,4).
(1)求三角形OAB的面积;
(2)若O,B两点的位置不变,点M在x轴上,则点M在什么位置时,三角形OBM的面积是三角形OAB的面积的2倍?
(3)若O,A两点的位置不变,点N由点B向上或向下平移得到,则点N在什么位置时,三角形OAN的面积是三角形OAB的面积的2倍?发布:2025/6/17 6:30:2组卷:331引用:2难度:0.3 -
2.已知a,b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.
(1)直接写出c及x的取值范围;
(2)若x是大于14的偶数.
①求c的长;
②判断△ABC的形状.发布:2025/6/16 22:30:4组卷:117引用:2难度:0.4 -
3.如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.
(1)求证:AD=BE;
(2)求∠AEB的度数;
(3)探究:如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM⊥DE于点M,连接BE.
①∠AEB的度数为 °;
②线段DM,AE,BE之间的数量关系为 .(直接写出答案,不需要说明理由)发布:2025/6/17 6:0:2组卷:365引用:3难度:0.6