圆心到弦的距离叫做该弦的弦心距.
【数学理解】如图①,在⊙O中,AB是弦,OP⊥AB,垂足为P,则OP的长是弦AB的弦心距.

(1)若⊙O的半径为5,弦AB的弦心距为3,则AB的长为 88.
(2)若⊙O的半径确定,下列关于AB的长随着OP的长的变化而变化的结论:
①AB的长随着OP的长的增大而增大;②AB的长随着OP的长的增大而减小;③AB的长与OP的长无关.
其中所有正确结论的序号是 ②②.
(3)【问题解决】若弦心距等于该弦长的一半,则这条弦所对的圆心角的度数为 9090°.
(4)已知如图②给定的线段EF和⊙O,点Q是⊙O内一定点.过点Q作弦AB,满足AB=EF,请问这样的弦可以作 22条.
【考点】圆的综合题.
【答案】8;②;90;2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/12 11:30:1组卷:50引用:2难度:0.4
相似题
-
1.如图,⊙O的半径为5,弦BC=6,A为BC所对优弧上一动点,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.
(1)求证:P为优弧BAC的中点;
(2)连接PC,求PC的长度;
(3)求sin∠BAC的值;
(4)若△ABC为非锐角三角形,请直接写出△ABC的面积的最大值.发布:2025/6/15 3:0:1组卷:97引用:1难度:0.1 -
2.如图,⊙O为△ABC的外接圆,AC=BC,D为OC与AB的交点,E为线段OC延长线上一点,且∠EAC=∠ABC.
(1)求证:直线AE是⊙O的切线.
(2)若CD=6,AB=16,求⊙O的半径;
(3)在(2)的基础上,点F在⊙O上,且=ˆBC,△ACF的内心点G在AB边上,求BG的长.ˆBF发布:2025/6/14 23:0:1组卷:1104引用:7难度:0.1 -
3.请阅读下面材料,并完成相应的任务;
阿基米德折弦定理
阿基米德(Archimedes,公元前287-公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.
阿拉伯Al-Biruni(973年-1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Biruni译本出版了俄文版《阿基米德全集》,第一题就是阿基米德的折弦定理.
阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是的中点,则从点M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.ˆABC
这个定理有很多证明方法,下面是运用“垂线法”证明CD=AB+BD的部分证明过程.
证明:如图2,过点M作MH⊥射线AB,垂足为点H,连接MA,MB,MC.
∵M是的中点,ˆABC
∴MA=MC.
…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)如图3,已知等边三角形ABC内接于⊙O,D为上一点,∠ABD=15°,CE⊥BD于点E,CE=2,连接AD,则△DAB的周长是 .ˆAC发布:2025/6/15 17:30:2组卷:757引用:4难度:0.1