如图,在平面直角坐标系中,抛物线y=ax2+bx-4与x轴交于点A(-2,0),B(4,0),与y轴交于点C,点D为BC的中点.

(1)求该抛物线的函数表达式;
(2)点G是该抛物线对称轴上的动点,若GA+GC有最小值,求此时点G的坐标;
(3)若点P是第四象限内该抛物线上一动点,求△BDP面积的最大值.
【考点】二次函数综合题.
【答案】(1)该抛物线的函数表达式为;
(2)此时点G的坐标为(1,-3);
(3)△BDP面积的最大值为2.
y
=
1
2
x
2
-
x
-
4
(2)此时点G的坐标为(1,-3);
(3)△BDP面积的最大值为2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/23 20:19:40组卷:2011引用:9难度:0.5
相似题
-
1.已知抛物线过点A(-3,0),B(0,3),C(1,0)
(1)求解析式;
(2)P是直线AB上方抛物线上一点,不与A、B重合,PD⊥AB于D,PF⊥x轴于F,与AB交于E.
①当C△PDE最大时,求P的坐标;
②以AP为边作正方形APMN,M或N恰好在对称轴上,求P的坐标.发布:2025/5/26 9:0:1组卷:137引用:1难度:0.4 -
2.在平面直角坐标系中,点O为坐标系的原点,经过点B(3,6)的抛物线
与x轴的正半轴交于点A.y=-12x2+bx
(1)求抛物线的解析式;
(2)如图1,点P为第一象限抛物线上的一点,且点P在抛物线对称轴的右侧,连接OP,AP,设点P的横坐标为t,△OPA的面积为S,求S与t的函数解析式(不要求写出自变量t的取值范围);
(3)如图2,在(2)的条件下,当时,连接BP,点C为线段OA上的一点,过点C作x轴的垂线交BP的延长线于点D,连接OD,BC,若S=352,求点C的坐标.∠ODB-12∠CBD=∠POA发布:2025/5/26 9:0:1组卷:39引用:1难度:0.1 -
3.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE-ED-DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②
;③当0<t≤5时,cos∠ABE=35;④当y=25t2秒时,△ABE∽△QBP;其中正确的结论是( )t=294发布:2025/5/26 9:0:1组卷:8479引用:28难度:0.5