试卷征集
加入会员
操作视频

【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.
【探究一】
(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
此时,显然能搭成一种等腰三角形.
所以,当n=3时,m=1.
(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.
所以,当n=4时,m=0.
(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.
若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.
所以,当n=5时,m=1.
(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.
若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.
所以,当n=6时,m=1.
综上所述,可得:表①
n3456
m1011
【探究二】
(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?
(仿照上述探究方法,写出解答过程,并将结果填在表②中)
(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
(只需把结果填在表②中)
表②
n78910
m
2
2
1
1
2
2
2
2
你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…
【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k-1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)
表③
n4k-14k4k+14k+2
m
k
k
k-1
k-1
k
k
k
k
【问题应用】:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了
672
672
根木棒.(只填结果)

【答案】2;1;2;2;k;k-1;k;k;672
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/18 21:30:2组卷:785引用:28难度:0.3
相似题
  • 1.在我校举行九年的级季篮球赛上,九年级(1)班的啦啦队队员,为了在明天的比赛中给本班同学加油助威,提前每人制作了一面同一规格的直角三角形彩旗.队员小明放学回家后,发现自己的彩旗破损了一角,他想重新制作一面彩旗.请你帮助小明,用直尺与圆规在作出一个与破损前完全一样的三角形(保留作图痕迹,不写作法).

    发布:2025/6/24 18:0:1组卷:29引用:2难度:0.5
  • 2.图①、图②均是6×6的正方形网格,每个小正方形的顶点称为格点,线段AB的点均在格点上,在图①、图②给定的网格中按要求画图.要求:借助网格,只用无刻度的尺,不要求写出画法.
    (1)在图①中找到一个格点C,使∠ABC是锐角,且tan∠ABC=
    1
    4
    ,并画出△ABC;
    (2)在图②中找到一个格点D,使∠ADB是锐角,且tan∠ADB=1,并画出△ABD.

    发布:2025/6/25 4:0:1组卷:17引用:1难度:0.5
  • 3.图①、图②、图③均是8×8的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,不要求写出画法,保留作图痕迹.
    (1)在图①中画出△ABC的中线BD.
    (2)在图②△ABC的边AB上找到一点E,将AB分成2:3两部分.
    (3)在图③△ABC的边BC上找到一点F,使S△ABF:S△ACF=2:3.

    发布:2025/6/25 5:30:3组卷:645引用:6难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正