已知函数f(x)=lnx-a(x-1x),a>0.
(1)讨论f(x)极值点的个数;
(2)若f(x)恰有三个零点t1,t2,t3(t1<t2<t3)和两个极值点x1,x2(x1<x2).
(ⅰ)证明:f(x1)+f(x2)=0;
(ⅱ)若m<n,且mlnm=nlnn,证明:(1-m)e-mt1t2t3>n(lnn+1).
f
(
x
)
=
lnx
-
a
(
x
-
1
x
)
(
1
-
m
)
e
-
m
t
1
t
2
t
3
>
n
(
lnn
+
1
)
【考点】利用导数研究函数的极值.
【答案】(1)当a≥时,f(x)无极值点,
当0<a<时,f(x)有两个极值点.
(2)(ⅰ)证明详情见解答.
(ⅱ)证明详情见解答.
1
2
当0<a<
1
2
(2)(ⅰ)证明详情见解答.
(ⅱ)证明详情见解答.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/8/7 8:0:9组卷:258引用:7难度:0.6
相似题
-
1.已知函数f(x)=(x-a)lnx(a∈R),它的导函数为f'(x).
(1)当a=1时,求f'(x)的零点;
(2)若函数f(x)存在极小值点,求a的取值范围.发布:2024/12/29 13:0:1组卷:279引用:8难度:0.4 -
2.若函数
有两个极值点,则实数a的取值范围为( )f(x)=e2x4-axex发布:2024/12/29 13:30:1组卷:124引用:4难度:0.5 -
3.定义:设f'(x)是f(x)的导函数,f″(x)是函数f'(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图像的对称中心,已知函数
的对称中心为(1,1),则下列说法中正确的有( )f(x)=ax3+bx2+53(ab≠0)发布:2024/12/29 13:30:1组卷:181引用:7难度:0.5