在数学实践活动课上,“卓越”小组准备研究如下问题:如图,EF为直尺的一条边,四边形ABCD为一正方形纸板(∠DAB、∠ABC、∠BCD、∠D均为直角)
(1)【操作发现】
如图①小组成员小方把正方形的一条边AB与EF重合放置,刘老师在与同学们交流研讨时又做出了∠DAF的平分线AQ,交正方形的边于点P.
则此时∠PAB的度数为 45°45°;∠PAB与∠DAE的度数之间的关系为 ∠PAB=12∠DAE∠PAB=12∠DAE.

(2)【问题探究】
受小方同学的启发,小组成员小丽将正方形纸板按如图②放置,若此时记∠DAE的度数为α,其他条件不变,请帮小丽同学探究:∠PAB与∠DAE的度数之间的关系是否发生改变,并说明理由.
(3)【拓展延伸】
组内其他同学也都继续探索,将正方形按如图③放置,刘老师同样做出了∠DAF的平分线AQ,请直接写出∠QAB与∠DAE的度数之间的关系.
1
2
1
2
【答案】45°;∠PAB=∠DAE
1
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/5 8:0:9组卷:686引用:7难度:0.6