如图1,抛物线y=14x2+bx+c,点A(4,-3),对称轴是直线x=2.顶点为D.抛物线与y轴交于点C,连接AC,过点A作AB⊥x轴于点B,点E是线段AC上的动点(点E不与A、C两点重合).
(1)求抛物线的函数解析式和顶点D的坐标;
(2)若直线DE将四边形OBAC分成面积比为1:3的两个四边形,求点E的坐标;
(3)如图2,连接BE,作矩形BEFG,在点E的运动过程中,是否存在点G落在y轴上的同时点F也恰好落在抛物线上?若存在,求出此时AE的长;若不存在,请说明理由.

1
4
【考点】二次函数综合题.
【答案】(1)y=x2-x-3,D(2,-4);
(2)(,-3)或(,-3);
(3)存在,.
1
4
(2)(
8
5
12
5
(3)存在,
4
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:277引用:1难度:0.1
相似题
-
1.如图,已知二次函数y=ax2+bx-4的图象与x轴交于A,B两点,(点A在点B左侧),与y轴交于点C,点A的坐标为(-2,0),且对称轴为直线x=1,直线AD交抛物线于点D(2,m).
(1)求二次函数的表达式;
(2)在抛物线的对称轴上是否存在一点M,使△MAC的周长最小,若存在,求出点M的坐标;
(3)如图2,点P是线段AB上的一动点(不与A、B重合),过点P作PE∥AD交BD于E,连接DP,当△DPE的面积最大时,求点P的坐标.发布:2025/6/6 20:30:1组卷:90引用:1难度:0.2 -
2.如图,已知抛物线y=x2+bx+c与直线y=-x+3相交于坐标轴上的A,B两点,顶点为C.
(1)填空:b=
(2)将直线AB向下平移h个单位长度,得直线EF.当h为何值时,直线EF与抛物线y=x2+bx+c没有交点?
(3)直线x=m与△ABC的边AB,AC分别交于点M,N.当直线x=m把△ABC的面积分为1:2两部分时,求m的值.发布:2025/6/6 21:0:2组卷:327引用:5难度:0.3 -
3.如图,抛物线y=ax2+bx+2经过点A(-1,0),B(4,0),交y轴于点C.
(1)求抛物线的表达式.
(2)点D为y轴右侧抛物线上一点,是否存在点D,使S△ABC=S△ABD?若存在,请求出点D的坐标;若不存在,请说明理由.23
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求点E的坐标.发布:2025/6/6 23:30:1组卷:40引用:1难度:0.3