如图1,反比例函数y=mx(m≠0)与一次函数y=kx+b(k≠0)的图象交于点A(1,3),点B(n,1),一次函数y=kx+b(k≠0)与y轴相交于点C.
(1)求反比例函数和一次函数的表达式;
(2)连接OA,OB,求△OAB的面积;
(3)如图2,点E是反比例函数图象上A点右侧一点,连接AE,把线段AE绕点A顺时针旋转90°,点E的对应点F恰好也落在这个反比例函数的图象上,求点E的坐标.

y
=
m
x
(
m
≠
0
)
【考点】反比例函数与一次函数的交点问题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/22 4:0:7组卷:6259引用:27难度:0.5
相似题
-
1.直线y=kx+b与反比例函数y=
(x<0)的图象相交于点A、B,与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4.mx
(1)试确定反比例函数的关系式.
(2)求△AOC的面积.
(3)如图直接写出反比例函数值大于一次函数值的自变量x的取值范围.发布:2025/9/14 20:0:2组卷:700引用:7难度:0.5 -
2.如图,在平面直角坐标系xOy中,一次函数y=-2x的图象与反比例函数y=
的图象的一个交点为A(-1,n).kx
(1)求反比例函数y=的解析式;kx
(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.发布:2025/9/14 19:30:2组卷:848引用:43难度:0.8 -
3.如图,函数y1=-x+4的图象与函数y2=
(x>0)的图象交于A(a,1)、B(1,b)两点.k2x
(1)求函数y2的表达式;
(2)观察图象,比较当x>0时,y1与y2的大小.发布:2025/9/14 16:30:2组卷:496引用:64难度:0.5