如图,一小球M从原点O处抛出,球的抛出路线近似抛物线.若小球到达最高点的坐标为(4,8),A(7,72).
(1)求抛物线的函数表达式;
(2)若要在斜坡OA上的点B处竖直立一个高5米的广告牌,点B的横坐标为3,请判断小球M能否飞过这个广告牌?通过计算说明理由;
(3)计算小球M在飞行的过程中距离斜坡OA的高度最大时与原点的水平距离是多少.
7
2
【考点】二次函数的应用.
【答案】(1)抛物线的表达式为y=-(x-4)2+8;
(2)小球M能飞过这个广告牌;
(3)M在飞行的过程中距离斜坡OA的高度最大时与原点的水平距离是.
1
2
(2)小球M能飞过这个广告牌;
(3)M在飞行的过程中距离斜坡OA的高度最大时与原点的水平距离是
7
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:224引用:1难度:0.5
相似题
-
1.【问题背景】为了保持室内空气的清新,某仓库的门动换气窗采用了以下设计:
如图1,窗子的形状是一个五边形,它可看作是由一个矩形ABCD和一个△CDE组成,该窗子关闭时可以完全密封,根据室内的温度和湿度也可以自动打开窗子上的通风口换气.通风口为△FMN(阴影部分均不通风),点F为AB的中点,MN是可以沿窗户边框上下滑动且始终保持和AB平行的伸缩横杆.
设窗子的边框AB、AD分别为a m,b m,窗子的高度(窗子的最高点到边框AB的距离)为c m.
【初步探究】
(1)若a=3,b=2,c=4(即点E到AB的距离为4).
①MN与AB之间的距离为1m,求此时△FMN的面积;
②MN与AB之间的距离为x m,试将通风口的面积y m2表示成关于x的函数;
③伸缩杆MN移动到什么位置时,通风口面积最大,最大面积是多少?
【拓展提升】
(2)若金属杆MN移动到高于CD所在位置的某一处时通风口面积达到最大值.
①c需要满足的条件是 ,通风口的最大面积是 m2(用含a、b、c的代数式表示)
②用直尺和圆规在图3中作出通风口面积最大金属杆MN所在的位置,(保留作图痕迹,不写作法)发布:2025/5/24 17:0:2组卷:518引用:3难度:0.3 -
2.甲经销商库存有1200套A品牌服装,每套进价400元,每套售价500元,一年内可卖完.现市场上流行B品牌服装,每套进价300元,每套售价600元,但一年内只允许经销商一次性订购B品牌服装,一年内B品牌服装销售无积压.因甲经销商无流动资金,只有低价转让A品牌服装,用转让来的资金购进B品牌服装,并销售.经与乙经销商协商,甲、乙双方达成转让协议,转让价格y(元/套)与转让数量x(套)之间的函数关系式为y=
.若甲经销商转让x套A品牌服装,一年内所获总利润为w(元).-110x+360(100≤x≤1200)
(1)求转让后剩余的A品牌服装的销售款Q1(元)与x(套)之间的函数关系式;
(2)求B品牌服装的销售款Q2(元)与x(套)之间的函数关系式;
(3)求w(元)与x(套)之间的函数关系式,并求w的最大值.发布:2025/5/24 17:0:2组卷:657引用:8难度:0.3 -
3.如图,有一座抛物线型拱桥,在正常水位时水面宽AB=20m,当水位上升3m时,水面宽CD=10m.
(1)按如图所示的直角坐标系,求此抛物线的函数表达式;
(2)有一条船以5km/h的速度向此桥径直驶来,当船距离此桥35km时,桥下水位正好在AB处,之后水位每小时上涨0.25m,当水位达到CD处时,将禁止船只通行.如果该船的速度不变继续向此桥行驶35km时,水面宽是多少?它能否安全通过此桥?发布:2025/5/24 16:30:1组卷:2601引用:3难度:0.5