已知函数f(x)=a0+a1x+a2x2+a3x3+…+anxn(n∈N*),且y=f(x)的图象经过点(1,n2),n=1,2,…,数列{an}为等差数列.
(I)求数列{an}的通项公式;
(Ⅱ)当n为奇数时,设g(x)=12[f(x)-f(-x)],是否存在自然数m和M,使得不等式m<g(12)<M恒成立?若存在,求出M-m的最小值;若不存在,请说明理由.
g
(
x
)
=
1
2
[
f
(
x
)
-
f
(
-
x
)
]
m
<
g
(
1
2
)
<
M
【考点】不等式的证明.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:75引用:5难度:0.5
相似题
-
1.已知关于x的不等式|x+1|-|x-2|≥|t-1|+t有解.
(1)求实数t的取值范围;
(2)若a,b,c均为正数,m为t的最大值,且2a+b+c=m.求证:.a2+b2+c2≥23发布:2024/12/29 8:0:12组卷:65引用:9难度:0.5 -
2.已知函数f(x)满足2axf(x)=2f(x)-1,f(1)=1,设无穷数列{an}满足an+1=f(an).
(1)求函数f(x)的表达式;
(2)若a1=3,从第几项起,数列{an}中的项满足an<an+1;
(3)若1+<a1<1m(m为常数且m∈N,m≠1),求最小自然数N,使得当n≥N时,总有0<an<1成立.mm-1发布:2025/1/14 8:0:1组卷:62引用:2难度:0.5 -
3.我们知道,
,当且仅当a=b时等号成立.即a,b的算术平均数的平方不大于a,b平方的算术平均数.此结论可以推广到三元,即(a+b2)2≤a2+b22,当且仅当a=b=c时等号成立.(a+b+c3)2≤a2+b2+c23
(1)证明:,当且仅当a=b=c时等号成立.(a+b+c3)2≤a2+b2+c23
(2)已知x>0,y>0,z>0,若不等式恒成立,利用(1)中的不等式,求实数t的最小值.x+y+z≤tx+y+z发布:2024/10/12 1:0:1组卷:18引用:2难度:0.4