函数y=f(x)的定义域为R,若存在常数M>0,使得|f(x)|≥M|x|对一切实数x均成立,则称f(x)为“圆锥托底型”函数.
(1)判断函数f(x)=2x,g(x)=x3是否为“圆锥托底型”函数?并说明理由.
(2)若f(x)=x2+1是“圆锥托底型”函数,求出M的最大值.
(3)问实数k、b满足什么条件,f(x)=kx+b是“圆锥托底型”函数.
【考点】函数的值.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:243引用:6难度:0.1
相似题
-
1.函数
,则f(f(1))=( )f(x)=x2-2x,x≥01-ex,x<0发布:2024/12/30 4:0:3组卷:48引用:3难度:0.7 -
2.若函数y=f(x)的解析式为
,则f(-2021)+f(-2019)+⋯+f(-3)+f(-1)+f(1)+f(3)+⋯+f(2021)=( )f(x)=21+x2+1+x发布:2025/1/5 19:0:5组卷:186引用:3难度:0.7 -
3.设集合
,A=[0,12),函数B=[12,1].f(x)=x+12,x∈A2(1-x),x∈B
(1)=;f[f(56)]
(2)若f[f(t)]∈A,则t的取值范围是 .发布:2024/12/29 9:30:1组卷:73引用:5难度:0.8