试卷征集
加入会员
操作视频

已知,四边形ABCD和四边形AEFG都是正方形,点H为CF的中点.
(1)连接BH、GH,
①如图1,若点G在边AB上,猜想BH和GH的关系,并给予证明;
②若将图1中的正方形AEFG绕点A顺时针旋转,使点E落在对角线CA的延长线上,请你在图2中补全图形,猜想BH和GH的关系,并给予证明.
(2)如图3,若AC=5,AF=3,将正方形AEFG绕点A旋转,连接EH.请你直接写出EH的取值范围
1≤CM≤4
1≤CM≤4

【考点】四边形综合题
【答案】1≤CM≤4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/5 7:30:1组卷:113引用:1难度:0.2
相似题
  • 1.在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动一折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.
    实践发现:
    对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.
    (1)①计算出∠MNE=
    °;
    ②继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=
    °;
    拓展延伸:
    (2)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形;
    解决问题:
    (3)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.
    请写出以上4个数值中你认为正确的数值

    发布:2025/6/7 2:30:1组卷:127引用:1难度:0.3
  • 2.已知正方形ABCD的边长为4,△BEF为等边三角形,点E在AB边上,点F在AB边的左侧.
    (1)如图1,若D,E,F在同一直线上,求BF的长;
    (2)如图2,连接AF,CE,BD,并延长CE交AF于点H,若CH⊥AF,求证:
    2
    AE+2FH=BD;
    (3)如图3,将△ABF沿AB翻折得到△ABP,点Q为AP的中点,连接CQ,若点E在射线BA上运动时,请直接写出线段CQ的最小值.

    发布:2025/6/7 2:0:5组卷:1043引用:10难度:0.2
  • 3.探究问题.
    (1)方法感悟:
    如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证:DE+BF=EF.

    感悟解题方法,并完成下列填空:
    将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
    ∴∠ABG+∠ABF=90°+90°=180°,
    因此,点G,B,F在同一条直线上.
    ∵∠EAF=45°,
    ∴∠2+∠3=

    ∵∠1=∠2,
    ∴∠1+∠3=45°,即∠GAF=∠EAF.
    又AG=AE,AF=AF,
    △GAE≌

    ∴GF=EF,故DE+BF=EF.
    (2)方法迁移:
    如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
    1
    2
    ∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
    (3)问题拓展:
    如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=
    1
    2
    ∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).

    发布:2025/6/7 1:0:2组卷:119引用:1难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正