如图,已知四边形ABCD为正方形,点E为对角线AC上的一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.
(1)求证:矩形DEFG是正方形;
(2)判断CE,CG与AB之间的数量关系,并给出证明.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:2554引用:5难度:0.4
相似题
-
1.如图,AD是△ABC的角平分线.DE,DF分别是△BAD和△ACD的高,得到下列四个结论:
①OA=OD;
②AD⊥EF;
③当∠A=90°时,四边形AEDF是正方形;
④AE+DF=AF+DE.
其中正确的是 (填序号).发布:2025/6/8 11:0:1组卷:414引用:3难度:0.5 -
2.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交线段BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
(1)如图,求证:矩形DEFG是正方形;
(2)若AB=2,CE=2,求CG的长.2发布:2025/6/8 14:0:2组卷:374引用:3难度:0.5 -
3.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,EF⊥AD于点F,DG⊥AE于点G,DG与EF交于点O.
(1)求证:四边形ABEF是正方形;
(2)若AD=AE,求证:AB=AG;
(3)在(2)的条件下,已知AB=1,求OD的长.发布:2025/6/8 19:30:1组卷:3539引用:14难度:0.4