如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D,点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到点C时,两点都停止运动,设运动时间为t秒.
(1)求线段CD的长;
(2)设△CPQ的面积为S,求S与t之间的函数关系式,并写出自变量的取值范围;
(3)当t为何值时,△CPQ与△CAD相似?请直接写出t的值.
【考点】相似形综合题.
【答案】(1)4.8;
(2)S=-t2+t(0≤t≤4.8);
(3)3或.
(2)S=-
2
5
48
25
(3)3或
9
5
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:980引用:5难度:0.3
相似题
-
1.【基础巩固】
(1)如图1,在△ABC中,D为BC上一点,连结AD,E为AD上一点,连结CE,若∠BAD=∠ACE,CD=CE,求证:△ABD∽△CAE.
【尝试应用】
(2)如图2,在平行四边形ABCD中,对角线AC、BD交于点O,E为OC上一点,连结BE,∠CBE=∠DCO,BE=DO,若BD=12,OE=5,求AC的长.
【拓展提升】
(3)如图3,在菱形ABCD中,对角线AC、BD交于点O,E为BC中点,F为DC上一点,连结OE、AF,∠AEO=∠CAF,若,AC=6,求菱形ABCD的边长.DFFC=53发布:2025/5/21 15:30:1组卷:1433引用:8难度:0.1 -
2.通过以前的学习,我们知道:“如图1,在正方形ABCD中,CE⊥DF,则CE=DF”.
某数学兴趣小组在完成了以上学习后,决定对该问题进一步探究:
(1)【问题探究】如图2,在正方形ABCD中,点E,F,G,H分别在线段AB,BC,CD,DA上,且EG⊥FH,试猜想=;EGFH
(2)【知识迁移】如图3,在矩形ABCD中,AB=m,BC=n,点E,F,G,H分别在线段AB,BC,CD,DA上,且EG⊥FH,试猜想的值,并证明你的猜想;EGFH
(3)【拓展应用】如图4,在四边形ABCD中,∠DAB=90°,∠ABC=60°,AB=BC,点E,F分别在线段AB,AD上,且CE⊥BF,求的值.CEBF发布:2025/5/21 13:30:2组卷:743引用:6难度:0.1 -
3.正方形ABCD中,AB=2,点E是对角线BD上的一动点,∠DAE=α(α≠45°).将△ADE沿AE翻折得到△AFE,直线BF交射线DC于点G.
(1)当0°<α<45°时,求∠DBG的度数(用含α的式子表示);
(2)点E在运动过程中,试探究的值是否发生变化?若不变,求出它的值.若变化,请说明理由;DGDE
(3)若BF=FG,求α的值.发布:2025/5/21 14:0:2组卷:648引用:2难度:0.1