为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,
药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.
(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;
(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?
(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?
【考点】反比例函数的应用.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/20 14:35:0组卷:293引用:9难度:0.1
相似题
-
1.在一次矿难事件的调查中发现,矿井内一氧化碳浓度y(mg/m3)和时间x(h)的关系如图所示:从零时起,井内空气中一氧化碳浓度达到30mg/m3,此后浓度呈直线增加,在第6小时达到最高值发生爆炸,之后y与x成反比例关系.请根据题中相关信息回答下列问题:
(1)求爆炸前后y与x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中浓度上升到60mg/m3时,井下3km深处的矿工接到自动报警信号,若要在爆炸前撤离到地面,问他们的逃生速度至少要多少km/h?
(3)矿工需要在空气中一氧化碳浓度下降到30mg/m3及以下时,才能回到矿井开展生产自救,则矿工至少要在爆炸多少小时后才能下井?发布:2025/6/8 17:30:2组卷:760引用:5难度:0.3 -
2.随着私家车数量的增加,城市的交通也越来越拥堵.通常情况下,某段高架桥上车辆的行驶速度y(千米/时)与高架桥上每百米车的数量x(辆)的关系如图所示,当x≥10时,y与x成反比例函数关系,当车的行驶速度低于40千米/时时,交通就会拥堵.为避免出现交通拥堵,高架桥上每百米车的数量x(x>0)的取值范围是( )
发布:2025/6/8 20:0:1组卷:135引用:1难度:0.7 -
3.新冠疫情下的中国在全世界抗疫战斗中全方位领跑.某制药公司生产3支单针疫苗和2支双针疫苗需要19min;生产2支单针疫苗和1支双针疫苗需要11min.
(1)制药公司生产1支单针疫苗和1支双针疫苗各需要多少时间?
(2)小明选择注射双针疫苗,若注射第一针疫苗后,体内抗体浓度y(单位:min/mL)与时间x(单位:天)的函数关系如图所示:疫苗注射后体内抗体浓度首先y与x成一次函数关系,体内抗体到达峰值后,y与x成反比例函数关系.若体内抗体浓度不高于50min/mL时,并且不低于23min/mL,可以打第二针疫苗,刺激记忆细胞增殖分化,产生大量浆细胞而产生更多的抗体.请问:
①请写出两段函数对应的表达式,并指出自变量的取值范围;
②小明可以在哪个时间段内打第二针疫苗?请通过计算说明.发布:2025/6/7 20:0:2组卷:336引用:4难度:0.5