甲、乙、丙三人分糖块,分法如下:先取三张一样的纸片,在纸片上各写一个正整数p、q、r,使p<q<r.分糖块时,每人抽一张纸片(同一轮中抽出的纸片不放回去),然后把纸片上的数减去p,就是他这一轮分得的糖块数.经过若干轮这样的分法后,甲共得到20块糖,乙共得到10块糖,丙共得到9块糖.又知最后一次乙拿到的纸片上写的数是r,而丙在各轮中拿到的纸片上写的数之和是18,则p、q、r分别是哪三个正整数?为什么?
【考点】数字问题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/4/20 6:0:1组卷:24引用:1难度:0.5
相似题
-
1.哥哥和弟弟一起搬运26块砖头,哥哥看弟弟搬的太多,就拿过来一半.弟弟不肯,又从哥哥那儿拿走一半.哥哥说当哥哥的应该多干,弟弟只好又给哥哥5块砖,这时哥哥的砖头比弟弟的多2块.那么弟弟原来有砖头块.
发布:2025/4/20 21:0:1组卷:41引用:2难度:0.5 -
2.一个多位数是149162536496481…,从左向右数的第100个数字是.
发布:2025/4/20 21:0:1组卷:17引用:1难度:0.9 -
3.将1,2,3,4,5,6,7,8,9按任意次序排成一排,其中每相邻的3个数字按其在排列中的顺序可组成7个三位数.对这9个数的每一种排列,都可以求出相应的7个三位数之和,则所得的三位数之和中,最小的是.
发布:2025/4/20 21:30:1组卷:37引用:2难度:0.1