如图,抛物线y=ax2-2x+c与x轴相交于A、B两点,与y轴相交于点C,点A在点B的左侧,A(-1,0),C(0,-3),点E是抛物线的顶点,P是抛物线对称轴上的点.
(1)求抛物线的函数表达式;
(2)当点P关于直线BC的对称点Q落在抛物线上时,求点Q的横坐标;
(3)若点D是抛物线上的动点,是否存在以点B,C,P,D为顶点的四边形是平行四边形,若存在,直接写出点D的坐标 (2,-3)或(4,5)或(-2,5)(2,-3)或(4,5)或(-2,5);若不存在,请说明理由;
(4)直线CE交x轴于点F,若点G是线段EF上的一个动点,是否存在以点O,F,G为顶点的三角形与△ABC相似.若存在,请直接写出点G的坐标 (-34,-94)或(-1,-2)(-34,-94)或(-1,-2);若不存在,请说明理由.

3
4
9
4
3
4
9
4
【考点】二次函数综合题.
【答案】(2,-3)或(4,5)或(-2,5);(-,-)或(-1,-2)
3
4
9
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/26 3:0:2组卷:272引用:2难度:0.3
相似题
-
1.如图,开口向下的抛物线y=-
(x-m)(x-2)与x轴正负半轴分别交于A、B点,与y轴交于C点,且AB=2OC;38
(1)直接写出A点坐标( ,0),并求m的值;
(2)抛物线在第三象限内图象上是否存在一点E,在y轴负半轴上有一点F,使以点C、点E、点F为顶点的三角形与△BOC相似,如果存在,求出F点坐标,如果不存在,说明理由;
(3)在线段BC上有一点P,连结PO、PA,若tan∠APO=,则直接写出点P坐标( ,)12发布:2025/5/26 6:30:2组卷:746引用:1难度:0.1 -
2.在平面直角坐标系中,抛物线经过点A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求该抛物线的函数表达式及顶点C的坐标;
(2)设该抛物线上一动点P的横坐标为t.
①在图1中,当-3<t<0时,求△PBO的面积S与t的函数关系式,并求S的最大值;
②在图2中,若点P在该抛物线上,点E在该抛物线的对称轴上,且以A,O,P,E为顶点的四边形是平行四边形,求点P的坐标;
③在图3中,若P是y轴左侧该抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P使得以点P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.发布:2025/5/26 7:0:2组卷:163引用:1难度:0.3 -
3.已知△ABC在平面直角坐标系中的位置如图所示,A点坐标为(-4,0),B点坐标为(6,0),点D为AC的中点,点E是抛物线在第二象限图象上一动点,经过点A、B、C三点的抛物线的解析式为y=ax2+bx+8,连接DE,把点A沿直线DE翻折,点A的对称点为点G.
(1)求抛物线的解析式;
(2)当点E运动时,若点G恰好落在BC上(G不与B、C重合),求E点的坐标;
(3)当点E运动时,若点B、C、D、G四点恰好在同一个圆上,求点E坐标.发布:2025/5/26 7:0:2组卷:253引用:1难度:0.2