某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=150t-15刻画;当25≤t≤37时可近似用函数p=-1160(t-h)2+0.4刻画.
(1)求h的值.
(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:
1
50
1
5
1
160
生长率p | 0.2 | 0.25 | 0.3 | 0.35 |
提前上市的天数m(天) | 0 | 5 | 10 | 15 |
②请用含t的代数式表示m.
(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).

【考点】二次函数的应用.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/9 9:30:1组卷:2269引用:11难度:0.5
相似题
-
1.某企业接到一批电子产品的生产任务,按要求在30天内完成,约定这批电子产品的出厂价为每件70元.该企业第x天生产的电子产品数量为y件,y与x满足如下关系式:y=
.20x(0≤x≤10)10x+200(10<x≤30)
(1)求该企业第几天生产的电子产品数量为400件;
(2)设第x天每件电子产品的成本是P元,P与x之间的关系可用图中的函数图象来表示.若该企业第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?发布:2025/6/9 16:30:1组卷:966引用:5难度:0.6 -
2.学校举办“科技之星”颁奖典礼,颁奖现场入口为一个拱门.小明要在拱门上顺次粘贴“科”“技”“之”“星”四个大字(如图1),其中,“科”与“星”距地面的高度相同,“技”与“之”距地面的高度相同,他发现拱门可以看作是抛物线的一部分,四个字和五角星可以看作抛物线上的点.通过测量得到拱门的最大跨度是10米,最高点的五角星距地面6.25米.
(1)请在图2中建立平面直角坐标系xOy,并求出该抛物线的解析式;
(2)“技”与“之”的水平距离为2a米.小明想同时达到如下两个设计效果:
①“科”与“星”的水平距离是“技”与“之”的水平距离的2倍;
②“技”与“科”距地面的高度差为1.5米.
小明的设计能否实现?若能实现,直接写出a的值;若不能实现,请说明理由.发布:2025/6/9 16:30:1组卷:626引用:6难度:0.5 -
3.向空中发射一枚信号弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此信号弹在第8秒与第14秒时的高度相等,则在 秒时信号弹所在高度最高的.
发布:2025/6/9 16:0:2组卷:156引用:2难度:0.7