试卷征集
加入会员
操作视频

孔子曰:温故而知新,可以为师矣.数学学科的学习也是如此,为了调查“数学成绩是否优秀”与“是否及时复习”之间的关系,某校志愿者从高二年级的所有学生中随机抽取60名学生进行问卷调查,得到如下样本数据:
数学成绩优秀(人数) 数学成绩不优秀(人数)
及时复习(人数) 24 6
不及时复习(人数) 8 22
(Ⅰ)试根据小概率值α=0.001的独立性检验,能否认为“数学成绩优秀”与“及时复习”有关系?
(Ⅱ)在该样本中,用分层抽样的方法从数学成绩优秀的学生中抽取8人,再从这8人中随机抽
取3人.设抽取3人中及时复习的人数为X,求X的分布列与数学期望.
临界值参考表:
α 0.10 0.05 0.025 0.010 0.005 0.001
xα 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式χ2=
n
ad
-
bc
2
a
+
b
c
+
d
a
+
c
b
+
d
,其中n=a+b+c+d)

【答案】(Ⅰ)结合卡方观测值可知,“数学成绩优秀”与“及时复习”有关系;
(Ⅱ)分布列用表格表示为:
X 1 2 3
p
3
28
15
28
5
14
数学期望
9
4
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:47引用:2难度:0.5
相似题
  • 1.某市举行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成绩大于90分的具有复赛资格,某校有800名学生参加了初赛,所有学生的成绩均在区间(30,150]内,其频率分布直方图如图.
    (Ⅰ)求获得复赛资格的人数;
    (Ⅱ)从初赛得分在区间(110,150]的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间(110,130]与(130,150]各抽取多少人?
    (Ⅲ)从(Ⅱ)抽取的7人中,选出3人参加全市座谈交流,设X表示得分在区间(130,150]中参加全市座谈交流的人数,求X的分布列及数学期望E(X).

    发布:2024/12/29 13:30:1组卷:134引用:7难度:0.5
  • 2.设离散型随机变量X的分布列如表:
    X 1 2 3 4 5
    P m 0.1 0.2 n 0.3
    若离散型随机变量Y=-3X+1,且E(X)=3,则(  )

    发布:2024/12/29 13:0:1组卷:199引用:6难度:0.5
  • 3.从4名男生和2名女生中任选3人参加演讲比赛,用X表示所选3人中女生的人数,则E(X)为(  )

    发布:2024/12/29 13:30:1组卷:139引用:6难度:0.7
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正