在平面直角坐标系xOy中,抛物线y=-m-14x2+5m4x+m2-3m+2与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.
(1)求点B的坐标;
(2)点P在线段OA上,从O点出发向点A运动,过P点作x轴的垂线,与直线OB交于点E.延长PE到点D.使得ED=PE.以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)①当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;②若P点从O点出发向A点做匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点做匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AB交于点F.延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动).若P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.
m
-
1
4
5
m
4
【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:529引用:19难度:0.1
相似题
-
1.在平面直角坐标系xOy中,已知抛物线y=ax2-2ax+a-2(a>0).分别过点M(t,0)和点N(t+2,0)作x轴的垂线,交抛物线于点A和点B.记抛物线在A,B之间的部分为图象G(包括A,B两点).
(1)求抛物线的顶点坐标;
(2)记图象G上任意一点的纵坐标的最大值与最小值的差为m.
①当a=2时,若图象G为轴对称图形,求m的值;
②若存在实数t,使得m=2,直接写出a的取值范围.发布:2025/6/20 5:0:1组卷:2209引用:5难度:0.1 -
2.如图,抛物线y=x2+bx+c与x轴相交于点A(-1,0)和点B,交y轴于点C,
.tan∠ACO=13
(1)求抛物线的解析式;
(2)如图1,P点为第四象限内抛物线上的一个动点,D点是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;
(3)如图2,将抛物线向左平移1个单位长度,得到新的抛物线y1,M为新抛物线对称轴上一点,N为直线AC上一动点,在(2)的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形,若存在,请直接写出点N的坐标;若不存在,请说明理由.发布:2025/6/20 5:0:1组卷:155引用:2难度:0.3 -
3.在平面直角坐标系xOy中,y=ax2+bx+c(a>0)的顶点是(h,k),点P(x1,p),Q(x2,q)是该抛物线上任意两点,x1<x2.
(1)若x1+x2=-2.
①若h=-1,比较p,q的大小关系;
②如果a=t,b=2t-1,比较p,q的大小关系,并说明理由.
(2)若x2=x1+6,当x1>1时,p<q恒成立,直接写出h的取值范围.发布:2025/6/20 4:0:1组卷:39引用:1难度:0.4