【问题背景】
如图1,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图2),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=2CD,从而得出结论:AC+BC=2CD
【简单应用】
(1)在图1中,若AC=2,BC=22,则CD=33.
(2)如图3,AB是⊙O的直径,点C、D在⊙O上,ˆAD=ˆBD,若AB=13,BC=12,求CD的长.
【拓展规律】
(3)如图4,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)

2
2
2
2
ˆ
AD
ˆ
BD
【考点】圆的综合题.
【答案】3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:625引用:15难度:0.1
相似题
-
1.如图1,已知点A(6,0),B(0,6),点C在半径为3的⊙O上运动,将OC顺时针旋转90°得到OD.
(1)当OC∥AB时,则∠BOC=°;
(2)如图2,若点E在线段AB上运动,连接DE,AC,BC.
①线段DE长度的最小值是 ;
②△ABC的面积最大值是 .
(3)如图3,连接AD,BC.
①当OC∥AD时,求证:BC是⊙O的切线;
②在整个运动过程中,若直线AD,BC交于点P,则下列命题错误的是 .
A.线段AD,BC的关系为互相垂直且相等
B.点P的纵坐标的最小值为3-32
C.点P的纵坐标的最大值为3+32
D.点P的运动轨迹为圆弧,该圆弧长为2π2发布:2025/6/17 6:30:2组卷:90引用:1难度:0.1 -
2.已知,在Rt△ABC中,∠A=90°,AB=3,AC=4,⊙A与⊙B外切于点D,并分别与BC、AC边交于点E、F.
(1)设EC=x,FC=y,求y关于x的函数关系式,并写出自变量x的取值范围;
(2)若以E、F、C为顶点的三角形与△ABC相似,求的值;ADBD
(3)若⊙C与⊙A、⊙B都相切,求的值.ADBD发布:2025/6/17 21:0:1组卷:22引用:1难度:0.3 -
3.如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的⊙O交边CD于点E,连接OE,过点E作⊙O的切线交边BC于点F.
(1)求证:△ODE∽△ECF;
(2)设DE=x,求OA的长(用含x的代数式表示);
(3)在点O运动的过程中,设△CEF的周长为p,试用含x的代数式表示p,你能发现怎样的结论?发布:2025/6/17 21:30:1组卷:37引用:1难度:0.4