在平面直角坐标系xOy中,正方形ABCD的顶点分别为A(0,1),B(-1,0),C(0,-1),D(1,0).对于图形M,给出如下定义:P为图形M上任意一点,Q为正方形ABCD边上任意一点,如果P,Q两点间
的距离有最大值,那么称这个最大值为图形M的“正方距”,记作d(M).
已知点E(3,0).
①直接写出d(点E)的值;
②过点E画直线y=kx-3k与y轴交于点F,当d(线段EF)取最小值时,求k的取值范围;
③设T是直线y=-x+3上的一点,以T为圆心,2长为半径作⊙T.若d(⊙T)满足d(⊙T)>3210+2,直接写出圆心T的横坐标x的取值范围.

2
3
2
10
2
【考点】圆的综合题.
【答案】①4;
②-1≤k≤1;
③x>1+或x<2-.
②-1≤k≤1;
③x>1+
29
2
29
2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:252引用:1难度:0.2
相似题
-
1.如图,分别以边长1为的等边三角形ABC的顶点为圆心,以其边长为半径作三个等圆,得交点D、E、F,连接CF交⊙C于点G,以点E为圆心,EG长为半径画弧,交边AB于点M,求AM的长.
发布:2025/5/27 4:30:2组卷:57引用:1难度:0.5 -
2.如图,已知四边形ABCD是平行四边形,AC,BD相交于O,∠ABC的平分线交CD的延长线于F,⊙O′是△DEF的外接圆,G是⊙O上一点,且AG=CD.求证:BG∥OO′.
发布:2025/5/27 11:30:1组卷:82引用:1难度:0.5 -
3.如图,在平面直角坐标系中,A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E.已知CD=8,抛物线经过O,E,A三点.
(1)求直线OB的函数表达式;
(2)求抛物线的函数表达式;
(3)若P为抛物线上位于第一象限内的一个动点,以P,O,A,E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个.发布:2025/5/26 19:30:1组卷:111引用:1难度:0.3