两位同学将一个关于x的二次三项式ax2+bx+c分解因式时,一位同学因看错了一次项系数而分解成2(x-1)(x-9),另一位同学因看错了常数项而分解成2(x-2)(x-4).
(1)求原来的二次三项式.
(2)将原来的二次三项式分解因式.
【考点】因式分解-十字相乘法等.
【答案】(1)2x2-12x+18;
(2)2(x-3)2.
(2)2(x-3)2.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/8 15:30:1组卷:301引用:3难度:0.7
相似题
-
1.【阅读与思考】
整式乘法与因式分解是方向相反的变形.如何把二次三项式ax2+bx+c(a≠0)分解因式呢?
我们已经知道:
(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a1a2x2+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次三项式ax2+bx+c(a≠0)的二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2,如图1所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1,c1位于图的上一行,a2,c2位于下一行,像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.
例如,将式子x2-x-6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项-6也分解为两个因数的积,即-6=2×(-3):然后把1,1,2,-3按图2所示的摆放,按对角线交叉相乘再相加的方法,得到1×(-3)+1×2=-1,恰好等于一次项的系数-1,于是x2-x-6就可以分解为(x+2)(x-3).
请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x-6=.
【理解与应用】
请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:
(1)2x2+5x-7=;
(2)6x2-7xy+2y2=;
【探究与拓展】
对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解如图4.将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+pj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题.
(1)分解因式3x2+5xy-2y2+x+9y-4=;
(2)若关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,求m的值.发布:2025/6/8 9:0:1组卷:263引用:1难度:0.5 -
2.把多项式x2+2x-8因式分解,正确的是( )
发布:2025/6/8 11:30:1组卷:605引用:3难度:0.8 -
3.阅读与思考:
整式乘法与因式分解是方向相反的变形.
由(x+p)(x+q)=x2+(p+q)x+pq,得x2+(p+q)x+pq=(x+p)(x+q);
利用这个式子可以将某些二次项系数是1的二次三项式因式分解.
例如:将式子x2+3x+2因式分解.
分析:这个式子的常数项2=1×2,一次项系数3=1+2,所以x2+3x+2=x2+(1+2)x+1×2.
解:x2+3x+2=(x+1)(x+2).
请仿照上面的方法,解答下列问题:
(1)因式分解:x2+7x-18= ;
(2)填空:若x2+px-8可分解为两个一次因式的积,则整数p的所有可能值是 ;
(3)利用因式解法解方程:x2-6x+8=0.发布:2025/6/8 8:30:1组卷:311引用:4难度:0.8