市政府要规划一个形如梯形ABCD的花园,如图,∠B=∠C=90°,BC=40米.园林设计者想在该花园内设计一个四边形AEFD区域来种植花卉,其他区域种植草皮,已知种植花卉的费用为每平方米100元.要求E、F分别位于BC、CD边上,AE⊥AD,且AD=2AE,DF=32米.为了节约成本,要使得种植花卉所需总费用尽可能的少,即种植花卉的面积尽可能的小,请根据相关数据求出种花卉所需总费用的最小值为 9760097600元.
【答案】97600
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/5/23 4:0:1组卷:57引用:1难度:0.4
相似题
-
1.如图1,已知排球场的长度为18m,宽9m,位于球场中线处的球网AB的高,度为2.24m.一球员定点发球技术非常稳定,当他站在底线中点O处发球时,排球运动轨迹是如图2的抛物线,C点为击球点,OC=1.8m,球飞行到达最高点F处时,其高度为2.6m,F与C的水平之距为6m,以O为原点建立如图所示的平面直角坐标系(排球大小)忽略不计).
(1)当他站在底线中点O处向正前方发球时,
①求排球飞行的高度y与水平距离x之间的函数关系式(不用写x的取值范围).
②这次所发的球能够过网吗?如果能够过网,是否会出界?并说明理由.
(2)假设该球员改变发球方向和击球点高度时球运动轨迹的抛物线形状不变,在点O处上方击球,要使球落在①号区域(以对方场地的边线底线交点M为圆心,半径为1.5m的扇形)内,球员跳起的高度范围是多少?(≈4.12,结果保留两位小数)17发布:2025/5/23 9:0:2组卷:348引用:3难度:0.2 -
2.根据《平顶山市志》记载,中兴路湛河桥是“市区第一座横跨湛河的大桥”.已知该桥的桥拱为抛物线形,在正常水位时测得水面AB的宽为50m,最高点C距离水面10m,如图所示以AB所在的直线为x轴,AB的中点为原点建立平面直角坐标系.
(1)求该抛物线的表达式;
(2)某次大雨后水面上涨至EF,测得最高点C距离EF的高度为3.6m,求桥拱下水面EF的宽度.发布:2025/5/23 9:30:1组卷:331引用:2难度:0.5 -
3.某超市销售一种成本为30元/千克的食品,第x天的销售价格为m元/千克,销售量为n千克,如表是整理后的部分数据.
时间x/天 1 5 10 20 … 销售价格m/(元/千克) 54.5 52.5 50 45 … 销售量n/千克 66 90 120 180 …
(2)当30≤x≤40时,求第几天的销售利润最大?最大利润是多少?
(3)如果该超市把销售价格在当天的基础上提高a元/千克(原销售量不变),那么前25天(包含第25天)每天的销售利润随x的增大而增大,请直接写出a的取值范围 .发布:2025/5/23 9:30:1组卷:376引用:3难度:0.4