《九章第术》勾股章[一五]问“勾股容方“描述了关于图形之间关系的问题:如图1,知道一个直角三角形较短直角边(“勾”)与较长直角边(“股”)的长度,那么,以该三角形的直角顶点为一个顶点、另外三个顶点分别在该三角形三边上的正方形的边长就可以求得.(我们不妨称这个正方形为该直角三角形的“所容正方形”)
其文如下:
题:今有勾五步,股十二步,问勾中容方几何?
等:方三步,十七分步之九.
术:并勾、股为法,勾、股相乘为实,实如法而一,得方一步.
“题”、“答”、“术”的意思大致如下:
问题:一个直角三角形两直角边的长分别为5和12,它的“所容正方形”的边长是多少?
答案:3917.
解法:5×125+12=6017=3917
(1)已知:如图在△ACB中,∠C=90°,若AC=b,BC=a,则“所容正方形”DEFC的边长为 aba+baba+b.
请说明理由:

(2)应用(1)中的结论解决问题:
如图2,中山公园有一块菱形场地,其面积为19200m2,两条对角线长度之和为400m,现要在这个菱形场地上修建一个正方形花圃,并且要使正方形花圃的四个顶点分别在菱形场地的四条边上,则该正方形花圃的边长为 9696.
3
9
17
5
×
12
5
+
12
=
60
17
=
3
9
17
ab
a
+
b
ab
a
+
b
【答案】;96
ab
a
+
b
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/4/23 12:26:7组卷:198引用:3难度:0.5