试卷征集
加入会员
操作视频

在平面直角坐标系xOy中,已知抛物线 y=x2-2tx+1.
(1)求该抛物线的对称轴(用含t的式子表示);
(2)若点M(t-2,m),N(t+3,n) 在抛物线y=x2-2tx+1上,试比较m,n的大小;
(3)P(x1,y1),Q(x2,y2) 是抛物线 y=x2-2tx+1 上的任意两点,若对于-1≤x1<3且x2=3,都有y1≤y2,求t的取值范围;
(4)P(t+1,y1),Q(2t-4,y2)是抛物线y=x2-2tx+1上的两点,且均满足y1≥y2,求t的最大值.

【答案】(1)抛物线的对称轴为直线x=t;
(2)n>m;
(3)t≤1;
(4)t的最大值为5.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:489引用:3难度:0.6
相似题
  • 1.如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为-1,3,则下列结论正确的个数有(  )
    ①ac<0;②2a+b=0;③4a+2b+c>0; ④对于任意x均有ax2+bx≥a+b.

    发布:2025/6/8 0:30:1组卷:49引用:1难度:0.6
  • 2.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A(-1,0),B(3,0)两点,与y轴的正半轴交于点C,顶点为D,则下列结论:①2a+b=0;②2c>3b;③当△ABC是等腰三角形时,a的值有2个;④当△BCD是直角三角形时,a=
    -
    2
    2
    .其中正确的个数(  )

    发布:2025/6/7 15:30:1组卷:41引用:2难度:0.6
  • 3.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:
    ①4a+b=0;
    ②9a+c>-3b;
    ③7a-3b+2c>0;
    ④若方程a(x+1)(x-5)=-3的两根为x1和x2,且x1<x2,则
    x
    2
    1
    +
    x
    2
    2
    >26.其中正确的结论有(  )

    发布:2025/6/7 15:30:1组卷:67引用:1难度:0.6
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正