在矩形ABCD中,BD为矩形ABCD的对角线,∠CBD=60°,BD=12.
(1)如图①,将△BCD绕点B逆时针旋转120°得到△BC0D0,其中,点C、D的对应点分别是点C0、D0,延长D0C0交AB于点E.求BE的长;
(2)如图②,将(1)中的△BC0D0以每秒1个单位长度的速度沿射线BC向右平行移动,得到△B1C1D1,其中,点B、C0、D0的对应点分别是点B1、C1、D1,当点C1移动到边CD上时停止移动.设移动的时间为t秒,△B1C1D1与矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出t的取值范围;
(3)如图③,在△B1C1D1移动过程中,直线D1C1与线段AB交于点N,直线B1C1与线段BD交于点M.是否存在某一时刻t,使△MNC为等腰三角形,若存在,求出时间t;若不存在,请说明理由.

【考点】根据实际问题选择函数类型;相似三角形的性质.
【答案】(1)BE=4;
(2))当0≤t≤3时,,
当3<t≤6时,,
当6<t≤9时,;
(3)当t的值为或或时,△MNC为等腰三角形.
3
(2))当0≤t≤3时,
S
=
3
2
t
2
当3<t≤6时,
S
=
-
3
6
t
2
+
4
3
t
-
6
3
当6<t≤9时,
S
=
-
2
3
3
t
2
+
10
3
t
-
24
3
(3)当t的值为
21
-
3
33
4
-
3
+
3
33
2
3
+
3
3
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/6/27 10:35:59组卷:31引用:2难度:0.2
相似题
-
1.随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益.假设某放射性同位素的衰变过程中,其含量P(单位:贝克)与时间t(单位:天)满足函数关系P(t)=
,其中P0为t=0时该放射性同位素的含量.已知t=15时,该放射性同位素的瞬时变化率为P02-t30,则该放射性同位素含量为4.5贝克时,衰变所需时间为( )-32ln210发布:2024/12/29 13:30:1组卷:158引用:12难度:0.7 -
2.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为福清人喜爱的交通工具.据预测,福清某新能源汽车4S店从2023年1月份起的前x个月,顾客对比亚迪汽车的总需量R(x)(单位:辆)与x的关系会近似地满足
(其中x∈N*且x≤6),该款汽车第x月的进货单价W(x)(单位:元)与x的近似关系是W(x)=150000+2000x.R(x)=12x(x+1)(39-2x)
(1)由前x个月的总需量R(x),求出第x月的需求量g(x)(单位:辆)与x的函数关系式;
(2)该款汽车每辆的售价为185000元,若不计其他费用,则这个汽车4S店在2023年的第几个月的月利润f(x)最大,最大月利润为多少元?发布:2024/12/29 11:30:2组卷:24引用:3难度:0.5 -
3.某工厂生产某种零件的固定成本为20000元,每生产一个零件要增加投入100元,已知总收入Q(单位:元)关于产量x(单位:个)满足函数:Q=
.400x-12x2,0≤x≤40080000,x>400
(1)将利润P(单位:元)表示为产量x的函数;(总收入=总成本+利润)
(2)当产量为何值时,零件的单位利润最大?最大单位利润是多少元?(单位利润=利润÷产量)发布:2024/12/29 13:0:1组卷:236引用:12难度:0.5