如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.
(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时点P的坐标和四边形ABPC的最大面积.
【考点】二次函数综合题.
【答案】见试题解答内容
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2025/6/13 16:30:1组卷:1114引用:8难度:0.3
相似题
-
1.约定:若函数图象上至少存在不同的两点关于原点对称,则把该函数称为“黄金函数”,其图象上关于原点对称的两点叫做一对“黄金点”.若点A(1,m),B(n,-4)是关于x的“黄金函数”y=ax2+bx+c(a≠0)上的一对“黄金点”,且该函数的对称轴始终位于直线x=2的右侧,有结论①a+c=0;②b=4;③
a+14b+c<0;④-1<a<0.则下列结论正确的是( )12发布:2025/6/14 11:0:2组卷:2232引用:14难度:0.3 -
2.如图,抛物线y=ax2+3ax+4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,且S△ABC=10,点P为第二象限内抛物线上的一点,连接BP.
(1)求抛物线的解析式;
(2)如图1,过点P作PD⊥x轴于点D,若∠BPD=2∠BCO,求的值;ADDB
(3)如图2,设BP与AC的交点为Q,连接PC,是否存在点P,使S△PCQ=S△BCQ?若存在,求出点P的坐标;若不存在,请说明理由.发布:2025/6/14 11:0:2组卷:762引用:7难度:0.1 -
3.已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.发布:2025/6/14 11:0:2组卷:1044引用:17难度:0.1